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Wave mechanics in more than one dimension
At the very beginning of our discussion of particle motion in one (kinetic) dimension,
we noted that the relevant quantum states should live in an infinite-dimensional Hilbert
space whose orthogonal basis kets correspond to points on the line:

|  ∈ H  span |x .
Now we need to move on to two and three kinetic dimensions, and the simple
mathematical tool for doing so is our friend the tensor product.

The quantum state of a point particle moving in two kinetic dimensions lives in a
doubly-infinite Hilbert space,

|  ∈ H ⊗ H  span |x  ⊗ |y .
And in three dimensions,

|  ∈ H ⊗ H ⊗ H  span |x  ⊗ |y  ⊗ | z .
Easy! Wave-functions correspondingly become (scalar) functions of a vector
argument:

2D : x,y  〈x | ⊗ 〈y || ,
3D : x,y, z  〈x | ⊗ 〈y | ⊗ 〈 z || .

It is important to note that changes of “coordinate” basis are possible once we
have gone to a wave-function representation, such that x,y can equivalently be
expressed as ,, or x,y, z as r,,. Hence we will often simply write r,
and things like inner products or operator moments can generally be integrated in
whichever coordinate system is most convenient.

〈 |   
−


dx 

−


dy 

−


dz∗x,y, zx,y, z

 
0


dr 

0


r sind 

0

2
rd∗r,,r,,,

〈 |x |   
−


dx 

−


dy 

−


dz∗x,y, zxx,y, z

 
0


dr 

0


r sind 

0

2
rd∗r,, r sincosr,,.

Rather than going on about this too long, let’s just jump into an example.

The 2D harmonic oscillator; angular momentum states
The 2D harmonic oscillator has potential energy

Vx,y  1
2 m0

2x2  y2.

In fact the x and y curvatures could be different, but let’s stick with the degenerate
case. For 2D motion, the overall Hamiltonian is thus
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H 
|p |2

2m  Vx,y

 1
2m px

2  py
2  1

2 m0
2x2  y2.

Here
p  −i∇,

px  −i ∂∂x ,

py  −i ∂∂y .

We clearly see that the overall Hamiltonian separates into terms that act on the x and
y spaces only,

H 
px

2

2m  1
2 m0

2x2 
py

2

2m  1
2 m0

2y2

 Hx  Hy,
where we understand that px means something like px ⊗ 1y, etc. Thus, we have every
right to expect that the energy eigenstates will be of tensor-product form, and indeed
that the x and y components will correspond to familiar eigenstates of the 1D harmonic
oscillator!

To make this most transparent, let’s define annihilation operators

ax 
m0
2 x  i px

m0
,

ay 
m0
2 y  i

py
m0

.

(If we had originally defined different curvatures in the x and y directions, we would
define these using x and y. ) In terms of these,

Hx  0 ax
†ax  1

2 ,

Hy  0 ay
†ay  1

2 .

We now simply define number states in the x and y spaces,
ax
†ax|nx   nx|nx ,

ay
†ay|ny   ny|ny ,

and the overall energy eigenstates are |nx ny   |nx  ⊗ |ny  nx,ny  0,1,2,…  with
eigenvalues

H |nx ny   Hx|nx  ⊗ |ny   |nx  ⊗ Hy|ny 

 0nx  ny  1|nx ny .
We immediately note that the energy spectrum has become degenerate in 2D
(assuming x  y  0), unlike the 1D case. Every combination of nx and ny which
add to a given N  nx  ny leads to the same energy eigenvalue 0N  1. In
general, there will be N  1 such combinations nx  0. .N, ny  N − nx. Hence we
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cannot simply label the energy eigenstates by N, but must always provide two
quantum numbers such as |nx ny , |Nnx , or |Nny .

Looking ahead a bit, let’s take this opportunity to introduce a different quantum
number, which corresponds to angular momentum. In two kinetic dimensions, angular
momentum is a scalar quantity. The corresponding observable is

Lz  xpy − ypx,
which we label with a z subscript to provide analogy with the 3D case. Note that
operators on the x and y subspaces commute with each other, so the operator
ordering in this definition is not critical.

As usual for a harmonic oscillator, our best way to proceed is to re-express the
angular momentum operator in terms of annihilation and creation operators. Using

x  
2m0

ax  ax
† , px  −i

m0
2 ax − ax

† ,

y  
2m0

ay  ay
† , py  −i

m0
2 ay − ay

† ,

we obtain
Lz  −i2 ax  ax

† ay − ay
†  i

2 ay  ay
† ax − ax

†

 i axay
† − ax

†ay .

Note that  thus appears as the natural unit of angular momentum! We can now easily
verify that

H,Lz   ax
†ax  ay

†ay,axay
† − ax

†ay

 ax
†ax,axay

† − ax
†ax,ax

†ay

 ay
†ay,axay

† − ay
†ay,ax

†ay

 ax
†ax,ax ay

† − ax
†ax,ax

† ay

 ax ay
†ay,ay

† − ax
† ay

†ay,ay

 −axay
† − ax

†ay  axay
†  ax

†ay

 0,
so the total energy and angular momentum can indeed be simultaneously be specified
as quantum numbers for the 2D harmonic oscillator.

What about eigenstates for Lz? The key here is to introduce new combinations of
the x and y annihilation operators,

aL  1
2
ax  iay,

aR  1
2
ax − iay.

These definitions are motivated by analogy with optical polarizations, where we know
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we can express right- and left-circular polarization vectors as even superpositions of
vertical and horizontal vectors with a relative phase of ei/2  i. It is straightforward to
verify

aR,aR
†  aL,aL

†  1,

aR,aL
†  aL,aR

†  0,

as we would want for annihilation and creation operators. Furthermore,
aL
†aL  1

2 ax
†ax  ay

†ay − iax
†ay  iaxay

† ,

aR
†aR  1

2 ax
†ax  ay

†ay  iax
†ay − iaxay

† ,

so
aR
†aR  aL

†aL  ax
†ax  ay

†ay

and we may write
H  0 aR

†aR  aL
†aL  1 ,

Lz  i axay
† − ax

†ay

 
2 aR  aL aR

† − aL
† − 

2 aR
†  aL

† aL − aR

 
2 aRaR

† − aLaL
†  aR

†aR − aL
†aL

  2aR
†aR  1 − 2aL

†aL − 1

  aR
†aR − aL

†aL .

It follows from the above that we have new number states
|nR nL   aR

† nR
aL
† nL

| 0x  ⊗ | 0y ,

with
H |nR nL   0nR  nL  1|nR nL 

 0N  1|nR nL 

Lz |nR nL   nR − nL|nR nL 

≡ m|nR nL .
Clearly the combinations N ≡ nR  nL and m ≡ nR − nL are linearly independent and
thus uniquely specify an energy eigenstate. In particular, we see that for given N, the
angular momentum eigenvalue m takes on values

m  −N, − N  2,−N  4, … N − 4, N − 2, N.
(To see this, note that for fixed N if we increase nR by one we must also decrease nL
by one, hence the interval of 2.) Thus the N  1-fold degeneracy is completely lifted
by Lz, as specification of both N and m labels a unique nR  Nm

2 , nL  N−m
2 .

Finally, it is interesting to look at the wave functions corresponding to states |Nm .
We clearly have
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ax ↔
m0
2 x  1

m0
∂
∂x ,

ay ↔
m0
2 y  1

m0
∂
∂y ,

so

aR ↔ m0
4 x − iy  1

m0
∂
∂x − i ∂

∂y ,

aL ↔
m0
4 x  iy  1

m0
∂
∂x  i ∂

∂y .

These can be re-expressed in cylindrical coordinates , as (this is a good exercise)

aR ↔ ei m0
4   1

m0
∂
∂
− i

∂
∂

,

aL ↔ ei m0
4   1

m0
∂
∂

 i

∂
∂

.

Solution of the resulting differential equations leads to the following [C-T et al,
complement DIV, Table I]. Note how the wave functions separate into radial and
angular parts, with simple angular solutions expim – this is a common feature for
angular momentum eigenstates.

Orbital angular momentum, in general
Angular momentum operator in QM is defined just the same way as in classical
mechanics:

L  r  p  r  
i ∇,

where r  x, y, z and p are the ‘vector’ position and momentum operators. The
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cross-product notation has its usual meaning,
Lx  ypz − zpy, Ly  zpx − xpz, Lz  xpy − ypx.

Note that there are no subtleties here regarding operator ordering, since the product
terms only involve operators acting on different ‘kinetic’ subspaces. Also, the angular
momentum operators are clearly Hermitian.

Commutators of the angular momentum operators with position and momentum
operators are easy to compute, e.g.,

Lx,x  ypz − zpy,x  0,

Lx,y  ypz − zpy,y  −z py,y  iz,

Lx,py  ypz − zpy,py  y,py pz  ipz,
etc. Hence, among the angular momentum operators themselves,

Lx,Ly   ypz − zpy,zpx − xpz

 ypz,zpx   zpy,xpz

 ypxpz,z  pyx z,pz 

 −iypx  ipyx

 iLz,
and by cyclic permutation

Lx,Ly   iLz, Ly,Lz   iLx, Lz,Lx   iLy.
As we shall see over the next few lectures, this all-important set of commutation
relations defines the structure of the angular momentum algebra. Note that this
provides uncertainty relations of the form

ΔLxΔLy ≥ 
2 | 〈Lz |,

and so on.

Algebraic derivation of eigenvalues
Similar to the LHO, the commutation relations can be used as the basis of an
algebraic approach to solving the angular momentum eigenvalue problem. Following
common convention we switch notation in this section to J ↔ L,

Jx,Jy   iJz, Jy,Jz   iJx, Jz,Jx   iJy,
in order to emphasize that the derivation applies not only to orbital angular momentum
but any set of operators (e.g. spin) that satisfy the given commutation relations.

First we define a few new operators in terms of the old ones,
J2 ≡ J  J  Jx

2  Jy
2  Jz

2,

J ≡ Jx  iJy,

J−  J†  Jx − iJy.
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As you might guess from the notation, J will play similar roles to those of the
annihilation and creation operators. These angular momentum raising and lowering
operators are clearly not Hermitian, but the ‘total angular momentum’ operator J2 is
Hermitian. Note that

J2,Jx   Jy
2,Jx   Jz

2,Jx 

 Jy
2Jx − JxJy

2  Jz
2Jx − JxJz

2

 Jy
2Jx − JyJx  iJzJy  JzJxJz  iJy − JxJz

2

 Jy
2Jx − JyJxJy − iJzJy  JzJxJz  iJzJy − JxJz

2

 Jy
2Jx − JyJyJx  iJz  JxJz  iJyJz − JxJz

2

 −iJyJz  iJyJz

 0,
and

J2,Jx   J2,Jy   J2,Jz   0
by symmetry. Hence, we find that while there are no states that have zero uncertainty
for more than one component of J (except those with J  0), there should exist
simultaneous eigenstates of J2 and any one Cartesian component of angular
momentum. If we think about this in classical terms, it’s like saying that we can’t
precisely define more than one Cartesian component of the angular momentum
vector, but we can precisely define its length together with any one Cartesian
component. This line of reasoning leads to the ‘semiclassical’ picture of angular
momentum [Merzbacher 11.2],

From this picture, we may also infer that for a given eigenvalue of J2, the
corresponding eigenvalues of Jx,y,z must lie within a certain range.

Let’s label the simultaneous eigenstates of J2 and Jz (for instance) by |m , with
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J2|m   2|m , Jz|m   m|m ,
where we are making use of our previous insight that  is the natural unit of angular
momentum. According to the semiclassical picture, we would like to think that m2 ≤ .
To see that this is indeed true, we may write
J2 − Jz

2  Jx
2  Jy

2  1
4 J  J−2 − J − J−2  1

2 JJ−  J−J  1
2 JJ†  J†J .

Recall that the expectation value of an operator of the form AA† or A†A must be
non-negative since, e.g.,

 |A†A |  A | †A |   |A | |2 ≥ 0.

Hence we conclude that
〈 |J2 − Jz

2 |   1
2  |JJ† |  1

2  |J†J | ≥ 0

for any state, and in particular for simultaneous eigenstates |m ,
〈m |J2 − Jz

2 |m   2 − m22 ≥ 0,  ≥ m2.

For a given value of , we have thus established an allowed range for m. This may
remind us of the procedure we used in the case of the LHO, where we found a lower
bound on eigenvalues of the number operator and this gave us a starting point for
deriving its eigenspectrum. Motivated by this analogy, we would next like to show that
the angular momentum raising and lowering operators can be used to obtain new
eigenstates from old eigenstates:

Jz|m   m|m ,
JzJ|m   JzJx  iJy|m 

 JxJz  iJy  iJyJz − iJx|m 

 Jx  iJyJz  Jx  iJy|m 

 m  1J|m ,
JzJ−|m   JzJx − iJy|m   m − 1J−|m .

Also, J commutes with J2 since Jx,y do, so
J2J|m   JJ2|m   2J|m .

Hence either J|m   0 or J|m  is proportional to a new simultaneous eigenstate
|m  1 :

J|m   C,m|m  1 ,
J−|m   C−,m|m − 1 ,

where C,m are normalization coefficients (which may be complex, in principle) yet
to be determined.

Now we use the fact that there are lower and upper bounds on m (in terms of ).
Using j to denote the maximum value of m for a given , we have

J| j   0.
We would like to use this ‘boundary condition’ to derive j in terms of , so let’s try to
put J2 and Jz on the LHS. An easy way to do this is to multiply from the left by J−,
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yielding
0  J−J| j 
 Jx − iJyJx  iJy| j 
 Jx

2  Jy
2  iJxJy − iJyJx| j 

 J2 − Jz
2 − Jz| j 

  − j2 − j2| j .
Hence we have

 − j2 − j  0,
  j  j  1.

Similarly, on the lower end we have
J−| j′   0,

where j′ denotes the minimum value of m for a given . This leads to
0  JJ−| j′ 
 Jx

2  Jy
2 − iJxJy  iJyJx| j′ 

 J2 − Jz
2  Jz| j′ 

  − j′ 
2  j′ 2| j′ ,

and
  j′  j′ − 1.

The two conditions we have derived yield a consistency condition
j  j  1  j′  j′ − 1,

whose solutions are
j′  −j, j′  j  1.

The latter solution is not allowed since we have defined j ≥ j′ , so we may henceforth
assume that j′  −j.

It is important to note that the bounds j , j′ we have derived are exact, since for
example J−|m   0 is satisfied only by m  j′ . Suppose we now start with the lowest
eigenstate | j′  and repeatedly apply the raising operator J. We saw above that this
leads (up to normalization) to new eigenstates

Jn| j′   |  j′  n 
until the upper bound on m is exceeded. Again, this ladder will truncate properly only if
ends precisely at | j , since J|m   0 is satisfied only by m  j. Hence we
conclude that j  j′  n  −j  n for some integer n ≥ 0, or equivalently

2j  n.
This shows that j can only be a non-negative integer or half-integer. For a given ,
and thus given j, we see that the possible eigenvalues of Jz are

m  j, j − 1, j − 2,  − j − 1, − j
are likewise all integral multiples of  (for integer j) or half-integral multiples of  (for

9



half-integer j). In general, there are 2j  1 allowed values of m for a given . Hence,
we may think of the eigenstates | j ;m  as being arranged in a ‘tiered’ structure:

| 0 ; 0 
| 1/2 ;−1/2  | 1/2 ; 1/2 
| 1 ;−1  | 1 ; 0  | 1 ; 1 
| 3/2 ;−3/2  | 3/2 ;−1/2  | 3/2 ;1/2  | 3/2 ;3/2 
| 2 ;−2 | 2 ;−1 | 2 ; 0 | 2 ; 1 | 2 ; 2


Up to this point we have thought of  and m as the natural quantum numbers to
specify angular momentum eigenstates, since we started by considering simultaneous
eigenstates of J2 and Jz. Noting that  and j are in one-to-one correspondence,
however, we can just as well label eigenstates according to m and j, with   jj  1.
This is in fact the more common convention, where j is often referred to as ‘the
angular momentum’ of a state | jm  and m is its ‘azimuthal quantum number.’

From this point of view, quantum mechanics gives us the following picture:
1. Angular momentum is quantized. The angular momentum state space breaks

down into subspaces of fixed j, where j must be an integer or half-integer
(including zero). The subspace with angular momentum j has 2j  1 basis
states.

2. No two Cartesian components of the angular momentum vector J can be
simultaneously specified without uncertainty.

3. Any one Cartesian component m may be precisely specified together with j.
4. The ‘length’ of the angular momentum vector 〈J2    jj  1 corresponds

to j only in the limit j → .
5. The length  jj  1 is therefore always greater than any single Cartesian

component m, with the difference made up by ‘fluctuations’ in the
orthogonal components.

Finally, let us compute the normalization coefficients C,m, defined above. This will
allow us to contemplate matrix representations of the angular momentum operators.
For normalization we require

| |m  1  |2  2|C,m |2 −1
J|m †J|m   1,

2|C,m |2  〈m |J∓J |m 

 〈m | Jx ∓ iJyJx  iJy |m 

 〈m |J2 − Jz
2 ∓ Jz |m 

  − m2 ∓ m2.
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Hence we may set
|C,m |2   − m2 ∓ m

 j j  1 − m2 ∓ m
 jj  1 − mm  1.

It is customary to set the phase of these coefficients to zero. We may then write (with
a little rearranging)

C,m  j − mj  m  1 ,

C−,m  j  mj − m  1 .

We thus see that, within a given j subspace, the raising and lowering operators may
be represented as 2j  1-dimensional matrices with real nonzero elements only on
the first super- or sub-diagonal. Since all the angular momentum operators can in fact
be given as linear combinations of the raising and lowering operators, we may
conclude that the j subspaces are in fact closed with respect to operation of the
angular momentum operators. As we’ll discuss in coming lectures, this important
insight will help us understand addition of angular momenta in terms of linear
representations of the angular momentum algebra.
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