Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

This multivector we can use as an operator, which we then call a spinor for \mathfrak{D}-space of physics.
To make an observable we construct a measure by the bilinear Clifford quadratic form $\psi \widetilde{\psi}$.
This product of even elements is even and all resulting bivectors cancel in pairs using (7.38).
Therefore, only parts of scalars and pseudoscalars contribute to $\psi \widetilde{\psi}=\alpha_{s}+v_{i} i$, with $\alpha_{s}, v_{i} \in \mathbb{R}$.
These two real components $\alpha_{s}=\alpha^{2}-v^{2}-F^{2}$ and $v_{i}=2 \alpha v$ we can transform to
a probability-density-amplitude ${ }^{411} \rho=\alpha_{s}^{2}+v_{i}^{2} \in \mathbb{R}$, together with a trigonometric abstract angle
$\beta=\cos ^{-1}\left(\alpha_{s} / \rho\right)=\sin ^{-1}\left(v_{i} / \rho\right) \quad \in \mathbb{R}$.
Then the observable measure is written in geometric algebraic multivector form ${ }^{42}$ for \mathfrak{D}-space

$$
\psi \widetilde{\psi}=\rho e^{i \beta}=\rho(\cos \beta+i \sin \beta) \quad \in \mathcal{G}_{1,3}^{+}(\mathbb{R}),
$$

where $\rho \geq 0$ is a real scalar dilation factor. Special when $\beta=0$, or just $\beta=n \pi, n \in \mathbb{Z}$ (7.59) is a real scalar $\langle\psi \widetilde{\psi}\rangle_{0}$, but else it is a scalar + pseudoscalar multivector

$$
\psi \widetilde{\psi}=\langle\psi \widetilde{\psi}\rangle_{0}+\langle\psi \widetilde{\psi}\rangle_{4} .
$$

A naïve interpretation is the scalar part has the potential to be a traditional observable real quantity, and the pseudoscalar part has the opportunity to carry a helicity \mathfrak{D}-volume information quantity. ${ }^{413}$ Anyway, $\widetilde{i}=i$ and (7.59) are reversing invariant as (7.38) which is $\widetilde{\psi \tilde{\psi}}=\psi \widetilde{\psi}=\widetilde{\rho e^{\imath \beta}}=\rho e^{i \beta} .414$ Hereby we can write $(\psi \widetilde{\psi})^{1 / 2}=\left(\rho^{1 / 2} e^{i \frac{1}{2} \beta}\right)^{\sim}=\rho^{1 / 2} e^{i \frac{1}{2} / \beta}$, and therefore divide (7.57) by this giving
$\left.\begin{array}{l}R=\psi(\psi \widetilde{\psi})^{-1 / 2} \\ \widetilde{R}=\widetilde{\psi}(\psi \widetilde{\psi})^{-1 / 2}\end{array}\right\} \in \mathcal{G}_{1,3}^{+}(\mathbb{R}) \subset \mathcal{G}_{1,3}(\mathbb{R})$
that is a general rotor fulfilling the unitary spinor condition
$R \widetilde{R}=\widetilde{R} R=1$.
Hereby we now can write the spinor (7.57) in the Hestenes canonical form
(7.63) $\quad \psi=\rho^{1 / 2} e^{i \frac{1}{2} / \beta} R=\left(\rho e^{i \beta}\right)^{1 / 2} R$
$\left.\widetilde{\psi}=\rho^{1 / 2} e^{i / 2 \beta} \widetilde{R}=\left(\rho e^{i \beta}\right)^{1 / 2} \widetilde{R} \quad\right\} \in \mathcal{G}_{1,3}^{+}(\mathbb{R}) \subset \mathcal{G}_{1,3}(\mathbb{R})$.
We will comment on the reversion invariant even multivector factor in $\mathcal{G}_{1,3}^{+}(\mathbb{R})$ of \mathfrak{D}-space

$$
\mathcal{D}=(\psi \widetilde{\psi})^{1 / 2}=\left(\rho e^{i \beta}\right)^{1 / 2}=\rho^{1 / 2}(\cos 1 / 2 \beta+i \sin 1 / 2 \beta)
$$

For this combined quantity of real-scalar and pseudoscalar, we have the quality pqg-0 and pqg-4 $\widetilde{\mathcal{D}}=\mathcal{D}$
of reversion invariance of both the direction-free scalar and the helicity \mathfrak{D}-volume pseudoscalar of primary quality of fourth grade direction. It would be strange if this quantity structure does not emerge from the quality of Nature per se (itself).
This has to be investigated further! Later on?
We can now formulate any even multivector in $\mathcal{G}_{1,3}^{+}(\mathbb{R})$ as a product
$\psi=\mathcal{D} R, \quad$ where $\quad \widetilde{\mathcal{D}}=\mathcal{D} \quad$ and $\quad R \widetilde{R}=\widetilde{R} R=1$.
As Hestenes [24] call attention to this rotor R perform Lorentz invariant rotations of form

$$
\underline{R}: \quad X \rightarrow X^{\prime}=R X \widetilde{R} .
$$

${ }^{411}$ Although the similarity to the form in (6.149) with oscillation amplitude, it is not the same, here rather mass-energy density ${ }^{12}$ Here we refer to the generalised concept described in $\S 5.8 .1 .2$ where the unit pseudoscalar is $I^{2}=-1 \Rightarrow I \sim \sqrt{-1}: \quad i \leftrightarrow I$ Here we also remember that ${ }^{i \beta}$ as cos and sin has no connection to the complex number plane but acts along the helicity volume with primary yuality of grade four direction i and defined by exponential series as (5.388), (5.396) and (5.397). Anyway, $\cos \beta$ and $\sin \beta$ are real scalar-valued $\in \mathbb{R}$, so the result (7.59) is a scalar and a pseudoscalar
${ }^{13}$ This must be investigated further in the future.
${ }^{14}$ This is essentially different from reversing complex scalar numbers $\widetilde{e^{i \beta}}=\left(e^{i \beta}\right)^{\dagger}=\left(e^{i \beta}\right)^{*}=e^{-i \beta} \in \mathbb{C}$, where $\tilde{i}=-i \in \mathbb{C}, \beta \in \mathbb{R}$. © Jens Erfurt Andresen, M.Sc. Physics, Denmark -332_ Research on the a priori of Physics - December 2022
7.1.5. Stop this volume. - 7.1.4.5 The Composite Rotor Structure in \mathfrak{D}-space -

7.1.4.5. The Composite Rotor Structure in \mathfrak{D}-spac

We will take a closer look at the rotor part R of (7.66) by the knowledge from Table 5.3,
where we have both the Lorentz hyperbolic rotor in a Minkowski \mathcal{B}-plane ($\mathcal{B}^{2}=1$)
(7.68) $\quad U_{\zeta, k}=e^{1 / 2 \zeta \mathcal{B}_{k}}, \quad$ or just in one chosen information \mathcal{B}-plane direction $U_{\zeta, \mathcal{B}}=e^{1 / 2 \zeta \mathcal{B}}$, and the Euclidean Euler angle rotors, e.g.,

$$
U_{\phi}=e^{\gamma_{1} \gamma_{2} 1 / 2 \phi}=e^{i_{3} 1 / 2 \phi}
$$

That idea concerns three linear independent (orthogonal) oscillating rotation planes of locality
(7.70) $\quad U_{\phi_{k}, k}=e^{i_{k}{ }^{1 / 2} \phi_{k}}, k=1,2,3$; 贡.

Thought interconnected as we best represent by the versor quaternion principal rotor (6.145) etc $U=u_{0}+u_{1} \boldsymbol{i}_{1}+u_{2} \boldsymbol{i}_{2}+u_{3} \boldsymbol{i}_{3}$. That as fermions spin $1 / 2$ particles with spin in one direction, e.g., a spin bivector can be given $S_{1 / 2}=\frac{1}{2} \hbar \boldsymbol{i}_{3}$ from a chosen unit bivector \boldsymbol{i}_{3} for the spin direction.(see II. 6.5 For spin one information subtons we can use (7.69) where the spin bivector is chosen $S_{1}=\hbar \boldsymbol{i}_{3}$

7.1.5. Stop this volume.

While waiting on the next volume of this book the inpatient reader is encouraged to study David Hestenes 2010 [24] further 2019 [25], [26] and to background [6], [23], [10], etc. and Doran \& Lasenby [18], [22], etc

For further inspiration see the figures on the next page:

For quotation reference use: ISBN-13: 978-8797246931

