Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931
calculations we try to avoid specifying such a basis until we need an objectification first by γ_{0} then some extension direction. Anyway, the STA idea is founded on the orthonormal $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$.
We see that the Minkowski \mathcal{B}-bivector for the line-extension-like information (7.5) $\sigma_{k} \fallingdotseq \gamma_{k} \wedge \gamma_{0}$ has (space) Descartes extension parity inversion $\overline{\sigma_{k}}=-\sigma_{k} \leftrightarrows \overline{\gamma_{k}} \wedge \overline{\gamma_{0}} \in \mathcal{G}_{1,3}(\mathbb{R})$, and $\widetilde{\sigma_{k}}=-\sigma_{k}$ While the angular-area-extension-like information bivector (7.6) $\boldsymbol{i}_{k} \leftrightarrows \gamma_{i} \wedge \gamma_{j}$ is parity inversion invariant $\overline{\boldsymbol{i}_{k}}=\boldsymbol{i}_{k} \equiv \overline{\gamma_{i}} \wedge \overline{\gamma_{j}}=\gamma_{i} \wedge \gamma_{j}$, of course, not reversion invariant $\widetilde{\boldsymbol{i}_{k}}=-\boldsymbol{i}_{k} \leftrightarrows \gamma_{j} \wedge \gamma_{i} .{ }^{410}$ Here it is urgent to note $\overline{\gamma_{k} \wedge \gamma_{0}}=-\gamma_{k} \wedge \gamma_{0}=\gamma^{k} \wedge \gamma^{0}$
In general, we write the reciprocal bivector basis as $\gamma^{\mu \nu}=\gamma^{\mu} \gamma^{v}=\gamma^{\mu} \wedge \gamma^{\nu}$, for $v \neq \mu=0,1,2,3$

$$
\left\{\gamma^{10}, \gamma^{20}, \gamma^{30}, \gamma^{23}, \gamma^{31}, \gamma^{12}\right\}=\left\{\gamma_{01}, \gamma_{02}, \gamma_{03}, \gamma_{23}, \gamma_{31}, \gamma_{12}\right\}=\left\{\overline{\gamma_{\mu} \wedge \gamma_{v}}\right\}
$$

$$
=\left\{\gamma_{01}, \gamma_{02}, \gamma_{03}, \gamma_{23}, \gamma_{31}, \gamma_{12}\right\}=\left\{-\gamma_{10},-\gamma_{20},-\gamma_{30},-\gamma_{32},-\gamma_{13},-\gamma_{21}\right\}
$$

The trivector basis is just $\left\{i \gamma_{\mu}\right\}$ and its reciprocal $\left\{i \gamma^{\mu}\right\}$ due to (7.15) and (7.40).
7.1.3.6. The STA Bivector Field \boldsymbol{F} of STA in the Information Development \mathfrak{D}-space of Physics We recall the stationary Pauli Basis (6.119) for the geometric algebra $\mathcal{G}_{3}(\mathbb{R})$ for 3 -space
(7.44) $\quad\left\{1, \sigma_{1}, \sigma_{2}, \sigma_{3}, \boldsymbol{i}_{1}=\boldsymbol{i} \sigma_{1}=\sigma_{3} \sigma_{2}, \boldsymbol{i}_{2}=\boldsymbol{i} \sigma_{2}=\sigma_{1} \sigma_{3}, \boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}=\sigma_{2} \sigma_{1}, \boldsymbol{i}:=\sigma_{3} \sigma_{2} \sigma_{1}\right\}, \gamma_{0} \gamma_{0}$ Right multiplying this with the information development measure unit γ_{0} we get the odd basis $\mathcal{G}_{1,3}^{-}(\mathbb{R}) \subset \mathcal{G}_{1,3}(\mathbb{R})$ for STA in \mathfrak{D}-space concerning 1 -vectors and trivectors
$\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3} \quad \gamma_{3} \gamma_{0} \gamma_{2}, \gamma_{1} \gamma_{0} \gamma_{3}, \quad \gamma_{2} \gamma_{0} \gamma_{1}\right.$
Right multiplying once again with the unit measure γ_{0} we get an even basis $\mathcal{G}_{1,3}^{+}(\mathbb{R})$ for STA

$$
\left\{\begin{array}{lllll}
\left\{1, \gamma_{1} \gamma_{0}, \gamma_{2} \gamma_{0}, \gamma_{3} \gamma_{0},\right. & \gamma_{2} \gamma_{3}, & \gamma_{3} \gamma_{1}, & \gamma_{1} \gamma_{2}, & \gamma_{0} \gamma_{3} \gamma_{2} \gamma_{1}
\end{array}\right\}
$$

To explicit this six element basis with bivectors in the even algebra $\gamma_{0} \subset \mathcal{G}_{1,3}(\mathbb{R})$ we write
$\left\{1, \gamma_{10}=\gamma_{1} \wedge \gamma_{0}, \gamma_{20}=\gamma_{2} \wedge \gamma_{0}, \gamma_{30}=\gamma_{3} \wedge \gamma_{0}, \quad \gamma_{23}=\gamma_{2} \wedge \gamma_{3}, \quad \gamma_{31}=\gamma_{3} \wedge \gamma_{1}, \quad \gamma_{12}=\gamma_{1} \wedge \gamma_{2}, \quad i\right\}$ We note that $\gamma_{\mu \nu}=\gamma_{\mu} \gamma_{v}=\gamma_{\mu} \wedge \gamma_{v}$, for $v \neq \mu$ are the bivector basis $\left\{\gamma_{\mu} \wedge \gamma_{v}\right\}$ for $F=\langle X\rangle_{2} \in \mathcal{G}_{1,3}(\mathbb{R})$. For a general bivector field $F \in \mathcal{G}_{1,3}(\mathbb{R})$, we write the expansion

$$
F=\frac{1}{2} F^{\mu \nu}\left(\gamma_{\mu} \wedge \gamma_{v}\right)=\frac{1}{2} F^{\mu v} \gamma_{\mu} \gamma_{\nu}=\frac{1}{2} F^{\mu v} \gamma_{\mu \nu} \in \mathcal{G}_{1,3}^{+}(\mathbb{R}),
$$

with six real scalar coordinate components
$F^{\mu v}=\left(\gamma^{\nu} \wedge \gamma^{\mu}\right) \cdot F=\left(\gamma^{v} \gamma^{\mu}\right) \cdot F=\gamma^{\nu \mu} \cdot F \in \mathbb{R}$,
with reason, coordinates after 1-vector directions: first γ^{μ}, then γ^{ν}, as $\gamma^{\nu} \cdot\left(\gamma^{\mu} \cdot F\right)=\left(\gamma^{\nu} \wedge \gamma^{\mu}\right) \cdot F$ In the matrix tradition $F^{\mu \nu}$ form an 4×4 antisymmetric contravariant matrix as a rank-2 tensor. In Space-Time Algebra it is a bivector field that can be resolved in six independent components. The $\frac{1}{2}$ in (7.48) comes from the anti-symmetry in the sum $\frac{1}{2} \sum_{\mu, v=0}^{3} F^{\mu \nu} \gamma_{\mu v}$, (12 terms and 4 zeros).
7.1.3.7. Difference Between the Pseudoscalar Concepts for \mathfrak{D}-space and \mathfrak{Z}-space

- The \mathfrak{D}-space concept we endow with the geometric algebra $\mathcal{G}_{1,3}(\mathbb{R})$ managed by the four-vector top grade four direction helicity pseudoscalar concept unit $i:=\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{0}=\gamma_{0} \gamma_{3} \gamma_{2} \gamma_{1}$, which is invariant to Clifford reversion conjugation $\tilde{i}=i$, and commutate with every even multivector
$X_{+} i=i X_{+}, \quad$ of the form $X_{+}=\langle X\rangle_{0}+\langle X\rangle_{2}+\langle X\rangle_{4} \in \mathcal{G}_{1,3}^{+}(\mathbb{R}) \subset \mathcal{G}_{1,3}(\mathbb{R})$,
but anticommute with odd elements of this algebra
$i X_{-}=-X_{-} i, \quad$ of the form $X_{-}=\langle X\rangle_{1}+\langle X\rangle_{3} \in \mathcal{G}_{1,3}^{-}(\mathbb{R}) \subset \mathcal{G}_{1,3}(\mathbb{R})$.
- Opposite in \mathcal{Z}-space endowed by $\mathcal{G}_{3}(\mathbb{R})$ managed by the trivector of top grade three chiral volume pseudoscalar concept unit $i:=\sigma_{3} \sigma_{2} \sigma_{1}$ direction, that reverses as $i^{\dagger}=-\boldsymbol{i}$, and commutes with all elements $A \in \mathcal{G}_{3}(\mathbb{R}): i A=A \boldsymbol{i}$. Yet invariant by Clifford conjugation $\widetilde{\boldsymbol{i}}=\boldsymbol{i} \in \mathcal{G}_{3}(\mathbb{R})$.
7.1.4. The Odd and Even Part of the Geometric Space-Time Algebra $\mathcal{G}_{1,3}(\mathbb{R})$

The general multivector form (7.27)-(7.33) can be decomposed into a sum of even and odd parts (7.52) $\quad X=X_{+}+X_{-}=\langle X\rangle_{+}+\langle X\rangle_{-}, \quad$ where
(7.53) $\quad\langle X\rangle_{+}=\langle X\rangle_{0}+\langle X\rangle_{2}+\langle X\rangle_{4}=X_{+}=\alpha+F+v i \quad \in \mathcal{G}_{1,3}^{+}(\mathbb{R}) \subset \mathcal{G}_{1,3}(\mathbb{R})$,
(7.54) $\langle X\rangle_{-}=\langle X\rangle_{1}+\langle X\rangle_{3} \quad=X_{-}=x+i y \quad \in \mathcal{G}_{1,3}^{-}(\mathbb{R}) \subset \mathcal{G}_{1,3}(\mathbb{R})$.

This decomposed concept idea we write as $\mathcal{G}_{1,3}(\mathbb{R})=\mathcal{G}_{1,3}^{+}(\mathbb{R}) \oplus \mathcal{G}_{1,3}^{-}(\mathbb{R})$
Algebraically this can be formed by $X_{ \pm}=\frac{1}{2}(X \mp i X i)$, an idea taken from Hestenes [23](26)p. 6
7.1.4.2. The Transcendental Ignorance of the Odd part of the Geometric Algebra for \mathfrak{D}-space

The founding substance we have introduced as (essential ideal) three subjects of Descartes' extensional unit directions $\gamma_{1}, \gamma_{2}, \gamma_{3}$, that in their idea are eternal unchangeable orthonorma autonomous for any entity in Nature. The extra local cyclic unit count with (essential ideal) direction γ_{0} into the FUTURE is the idea of a persistent chronometric subject for development The founding basis $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ for the $\mathcal{G}_{1,3}(\mathbb{R})$ is the concept idea of subjects of the concept of a \mathfrak{D}-space substance of physics. The linear construction (7.10), (7.30) $x=x^{\mu} \gamma_{\mu}$ 1-vector and its algebraic dual $i x=x^{\mu} i \gamma_{\mu}$ or (7.32) $i y=y^{\mu} i \gamma_{\mu}$ trivector is a pure substantial mathematical construction that has no direct object image for the intuition of natural space for physics. The odd standard basis $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ is the directional subject foundation for our algebra $\mathcal{G}_{1,3}(\mathbb{R})$ established from a traditional non-Euclidean linear additional vector space $V_{1,3}(\mathbb{R}) \sim \mathbb{R}^{4}$ by (7.10). Mutual multiplication of the odd elements $X_{-} \in \mathcal{G}_{1,3}^{-}(\mathbb{R})$ are lifted into the even algebra $\mathcal{G}_{1,3}^{+}(\mathbb{R})$ and further multiplication will stay closed inside this even algebra. (Out of the transcendental odd?) Now we will ignore the odd case and concentrate on the even closed algebra $\mathcal{G}_{1,3}^{+}(\mathbb{R})$.
7.1.4.3. The Even Closed Geometric Algebra of \mathfrak{D}-space

The even closed algebra $\mathcal{G}_{1,3}^{+}(\mathbb{R})$ consists of scalars

$$
\begin{equation*}
\langle X\rangle_{0}=\alpha \in \mathbb{R}, \tag{7.33}
\end{equation*}
$$

and pseudoscalars
$\langle X\rangle_{4}=v i$,
together with the bivector field concept in \mathfrak{D}-space of physics
$\langle X\rangle_{2}=F=\left(F^{10} \gamma_{1} \gamma_{0}+F^{20} \gamma_{2} \gamma_{0}+F^{30} \gamma_{3} \gamma_{0}\right)+\left(F^{32} \gamma_{2} \gamma_{3}+F^{13} \gamma_{3} \gamma_{1}+F^{21} \gamma_{1} \gamma_{2}\right)(7.31) \Leftrightarrow$
$\langle X\rangle_{2}=F=\left(F^{10} \mathcal{B}_{1}+F^{20} \mathcal{B}_{2}+F^{30} \mathcal{B}_{3}\right)+\left(F^{32} i \mathcal{B}_{1}+F^{13} i \mathcal{B}_{2}+F^{21} i \mathcal{B}_{3}\right)$,
that is (a Minkowski \mathcal{B}-plane bivector) $+($ a Cartesian extension plane bivector). We recall that these two bivector parts stand in dual quality to each other. We have the field bivector
$F=\sum_{k=1}^{3} F^{k 0} \mathcal{B}_{k}+\frac{1}{2} \sum_{j, k=1}^{3} F^{k j} \gamma_{k} \gamma_{j} \Rightarrow F^{k 0} \sigma_{k}+\frac{1}{2} F^{k j} \sigma_{j} \sigma_{k}=\vec{E}+i \vec{B}$.
The left side sum is the bivector field in $\mathcal{G}_{1,3}^{+}(\mathbb{R})$ that mimic the electromagnetic tensor field
The right side is e.g. the electric field 1 -vector plus the magnetic field bivector in $\mathcal{G}_{3}(\mathbb{R})$.
The reader is urged to consider the connection idea $\mathcal{G}_{1,3}^{+}(\mathbb{R}) \sim \mathcal{G}_{3}(\mathbb{R})$ as a subject \sim object principle.
7.1.4.4. The Even Geometric Spinor Quality in the Algebra $\mathcal{G}_{1,3}+(\mathbb{R})$ of \mathfrak{D}-space

The general even multivector element form (7.28) is then written as a spinor (wavefunction)

$$
\left.\begin{array}{ll}
(7.57) & \\
\widetilde{\psi}=\alpha+F+v i \\
& =\alpha-F+v i
\end{array}\right\} \in \mathcal{G}_{1,3}^{+}(\mathbb{R}) \subset \mathcal{G}_{1,3}(\mathbb{R}) .
$$

© Jens Erfurt Andresen, M.Sc. NBI-UCPH

