Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

The information event point in \mathfrak{D}-space expressed as a 1 -vector (7.10) spanned from $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$

$$
x=x^{\mu} \gamma_{\mu} \in V_{1,3}(\mathbb{R}) \subset \mathcal{G}_{1,3}(\mathbb{R})
$$

with the contravariant relation coordinate calculation

$$
x^{\mu}=\gamma^{\mu} \cdot x
$$

We see that we use the reciprocal frame idea $\left\{\gamma^{\mu}\right\}$ to determine the coordinates of the information events point x in \mathfrak{D}-space from the geometric algebra standard basis $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\} \subset \mathcal{G}_{1,3}(\mathbb{R})$.

7.1.3.2. The Multivector Decomposition in a Sum of Grades for \mathfrak{D}-space of Physics

For the general multivector element X in STA, the separation in the different direction grades is $X=\langle X\rangle_{0}+\langle X\rangle_{1}+\langle X\rangle_{2}+\langle X\rangle_{3}+\langle X\rangle_{4} \quad \in \mathcal{G}_{1,3}(\mathbb{R})$,
(7.28) $\quad X=\alpha+x+F+i y+v i \quad \in \mathcal{G}_{1,3}(\mathbb{R})$.

We have separated the multivector concept into five different primary quality grades
(7.31) $\quad\langle X\rangle_{2}=F=\left(F^{10} \gamma_{1} \gamma_{0}+F^{20} \gamma_{2} \gamma_{0}+F^{30} \gamma_{3} \gamma_{0}\right)+\left(F^{32} \gamma_{2} \gamma_{3}+F^{13} \gamma_{3} \gamma_{1}+F^{21} \gamma_{1} \gamma_{2}\right)$, pqg-2, bivector, $\operatorname{dim}\left({ }^{2} V_{3,3}\right)=6$,
(7.32) $\quad\langle X\rangle_{3}=i y=i\left(y_{0} \gamma_{0}+y_{1} \gamma_{1}+y_{2} \gamma_{2}+y_{3} \gamma_{3}\right), \quad \boldsymbol{p q g}$-3, trivector, $\operatorname{dim}\left({ }^{3} V_{1,3}\right)=4$,
(7.33) $\quad\langle X\rangle_{4}=v i, \quad v \in \mathbb{R}$
pqg-4, pseudoscalar, $\operatorname{dim}(\mathbb{R})=1$

All coordinate coefficients are real scalars $x_{\mu}, y_{\mu} \in \mathbb{R}, \mu=0,1,2,3$, and $\beta_{k}, \phi_{k} \in \mathbb{R}, k=1,2,3$ of $\mathcal{G}_{1,3}(\mathbb{R})$. For this grade four geometric algebra, we have $2^{4}=16$ different dimensions in STA that all describe qualitative impact in \mathfrak{D}-space of physics.
We have a mixed basis structure of STA with 16 direction generators
$\left\{1,\left\{\gamma_{\mu}\right\}, \quad\left\{\gamma_{\mu} \wedge \gamma_{\nu}\right\}, \quad\left\{i \gamma_{\mu}\right\}, i\right\}, \quad \mu, \nu, \kappa=0,1,2,3$. or $\left\{1,\left\{\gamma_{\mu}\right\}, \quad\left\{\gamma_{\mu \nu}\right\}, \quad\left\{\gamma_{\mu v \kappa}\right\}, i\right\}$ The first part of this mixed basis is the scalar $\langle X\rangle_{0}$, the last part is the pseudoscalar $\langle X\rangle_{4}$ and the middle part is bivector part $\langle X\rangle_{2}$ of the geometric STA. These middle part bivector basis can be divided into two groups: The line-extension-like as (7.5) $\sigma_{k} \leftrightarrows \mathcal{B}_{k}=\gamma_{k} \gamma_{0}=\gamma_{k} \wedge \gamma_{0}, \quad k=1,2,3$, and the dual angular-area-extension-like as (7.6) e.g. $\boldsymbol{i}_{3} \leftrightarrows i \mathcal{B}_{3}=\gamma_{1} \gamma_{2}=\gamma_{1} \wedge \gamma_{2}$. With the use of this and (7.16) we can for the \mathfrak{D}-space structure write the mixed basis (7.34) as

$$
\left\{1, \quad\left\{\gamma_{\mu}\right\}, \quad\left\{\mathcal{B}_{k}, i \mathcal{B}_{k}\right\}, \quad\left\{i \gamma_{\mu}\right\}, \quad i\right\}, \mu=0,1,2,3, \quad k=1,2,3
$$

for the full geometric Space-Time Algebra $\mathcal{G}_{1,3}(\mathbb{R})$, which we can use for all types of information event entities in \mathfrak{D}-space of physics. (In [22]p.7(2.16) the bivectors are called $\left\{\sigma_{k}, i \sigma_{k}\right\}=\left\{\mathcal{B}_{k}, i \mathcal{B}_{k}\right\}$. $)^{408}$ 7.1.3.3. Conjugation in Space-Time Algebra

In STA, we use three different types of conjugation

Table 7.1 Conjugation of		calar	$\mathcal{G}_{1,3}(\mathbb{R})$, Space-Time Algebra for \mathfrak{D}-space.					$\mathcal{G}_{3}(\mathbb{R})$ for 3-space.		
Type	conjugation	\mathbb{R}	x x	$F \leftarrow \mathcal{B}_{k}$	$F \leftarrow i \mathcal{B}_{k}$	iy	i	\mathbf{x}	B	i
Origin	e.g.: ${ }^{\text {d }}$ X	α	 γ_{k} γ_{0}	$\gamma_{k} \gamma_{0}$	$\gamma_{k} \gamma_{j}$	iy	i	σ_{k}	$\sigma_{j} \sigma_{k}$	i
Reversion	$(X)^{\dagger}$	$+\alpha$	$+\gamma_{k} \gamma_{0}$	$-\gamma_{k} \gamma_{0}$	$\gamma_{j} \gamma_{k}=-\gamma_{k} \gamma_{j}$	$y i=-i y$	i	$+\sigma_{k}$	$\sigma_{k} \sigma_{j}=-\sigma_{j} \sigma_{k}$	-i
Inversion	$\overline{(X)}=(X)^{-}$	+ α	- $\gamma_{k} \gamma_{0}$	$-\gamma_{k} \gamma_{0}$	$+\gamma_{k} \gamma_{j}$	-iy	i	$-\sigma_{k}$	$\sigma_{j} \sigma_{k}$	-i
Clifford ${ }^{\sim}$	$\widetilde{X})=(X) \sim$	+ α	$+\gamma_{k} \gamma_{0}$	$-\gamma_{k} \gamma_{0}$	$\gamma_{j} \gamma_{k}=-\gamma_{k} \gamma_{j} \mid$	$y i=-i y$	i	$-\sigma_{k}$	$\sigma_{k} \sigma_{j}=-\sigma_{j} \sigma_{k}$	+i
Even or odd parts:		even	odd		even	odd	even	odd	even	odd
		$\langle X\rangle_{0}$	$+\langle X\rangle_{1}$		$\langle X\rangle_{2}$	$\langle X\rangle_{3}$			$A\rangle_{0}+\langle A\rangle$	

${ }^{108}$ We use bold $\sigma_{k} \in \mathcal{G}_{3}(\mathbb{R})$ to indicate 1 -vector in 3 -space algebra and $\sigma_{k} \in \mathcal{G}_{1,3}(\mathbb{R})$ indicate a bivector member in STA of \mathfrak{D}-space. (C) Jens Erfurt Andresen, M.Sc. Physics, Denmark

In the $\mathcal{G}_{1,3}(\mathbb{R})$ algebra the Clifford ${ }^{\sim}$ conjugated is the same as the reversion in [23]p.5,(20)-(21),

$$
\left.\begin{array}{l}
X=\alpha+x+F+i y+v i \\
\widetilde{X}=\alpha+x-F-i y+v i
\end{array}\right\} \in \mathcal{G}_{1,3}(\mathbb{R})
$$

We take the product $X A$ write another multivector as e.g., $A=\alpha_{A}+a+F_{A}+i b+v_{A} i$, and find
(7.37) $\quad \overline{(X A)}=(X A)^{\sim}=\widetilde{A} \widetilde{X}$

We have the simple relation $(\widetilde{\widetilde{X}})=(\widetilde{X})^{\sim}=X$. Hence for the product we call the
Clifford conjugation quadratic form $X \widetilde{X}=\widetilde{X} X$, we have the conjugation invariance in \mathfrak{D}-space
$(X \widetilde{X})^{\sim}=\widetilde{X} X=X \widetilde{X}$
$\in \mathcal{G}_{1,3}(\mathbb{R})$.
7.1.3.4. Reversion of the Odd Chirality Volume Pseudoscalar \boldsymbol{i} in the $\mathcal{G}_{3}(\mathbb{R})$ Algebra for $\boldsymbol{3}$-space In 3 -space treated in chapter 6 , we use the $\mathcal{G}_{3}(\mathbb{R})$ algebra with even subalgebra $\mathcal{G}_{0,2}(\mathbb{R}) \sim \mathcal{G}_{3}^{+}(\mathbb{R})$ $\subset \mathcal{G}_{3}(\mathbb{R})$. The two dual concepts connects; the odd 1 -vectors $\mathbf{x} \in \mathcal{G}_{3}^{-}(\mathbb{R}) \subset \mathcal{G}_{3}(\mathbb{R})$ and the even bivectors $\mathrm{B} \in \mathcal{G}_{3}^{+}(\mathbb{R})$ by the dextral chiral unit pseudoscalar \boldsymbol{i} that is endowed with the quality $i^{2}=-1$. In $\mathcal{G}_{3}(\mathbb{R})$. This unit pseudoscalar inherits conjugation qualities expressed in Table 7.1 The reversion of this is $i^{\dagger}=-\boldsymbol{i}$ due to the definition $\boldsymbol{i}:=\sigma_{3} \sigma_{2} \sigma_{1} \Rightarrow\left(\sigma_{3} \sigma_{2} \sigma_{1}\right)^{\dagger}=\sigma_{1} \sigma_{2} \sigma_{3}=-\boldsymbol{i}$. Further, the extension parity inversion gives $i^{-}=-i \Leftarrow\left(\sigma_{3} \sigma_{2} \sigma_{1}\right)^{-}=\left(-\sigma_{3}\right)\left(-\sigma_{2}\right)\left(-\sigma_{1}\right)=-i$. The combination of these two conjugations gives the Clifford ${ }^{\text {² }}$ conjugation
$\left(i^{\dagger}\right)^{-}=(i)^{\sim}=\tilde{i}=i \quad \in \mathcal{G}_{3}(\mathbb{R})$,
that is a combined inversion and reversion as the conjugation $A \rightarrow \widetilde{A} \in \mathcal{G}_{3}(\mathbb{R})$ in 3 -space
Right multiplying the dextral chirality unit pseudoscalar $i \in \mathcal{G}_{3}(\mathbb{R})$ with the information development unit γ_{0} we achieve the positive helicity unit pseudoscalar $i \gamma_{0} \leftrightarrows i \in \mathcal{G}_{1,3}(\mathbb{R})$ of STA for the dextral development volume in \mathfrak{D}-space of information in physics
7.1.3.5. Reversion of the Even Helicity Pseudoscalar \boldsymbol{i} in the Algebra $\mathcal{G}_{1,3}(\mathbb{R})$ for \mathfrak{D}-space In \mathfrak{D}-space the unit dextral helicity pseudoscalar (7.11) $i:=\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{0}$ is conjugation invariant
$i^{\dagger}=i, \quad i^{-}=\bar{i}=i, \quad$ and $\quad i^{\sim}=\tilde{i}=i, \quad$ because of $\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{0}=\gamma_{0} \gamma_{3} \gamma_{2} \gamma_{1}$ For every X in $\mathcal{G}_{1,3}(\mathbb{R})$, the Clifford conjugation $X \rightarrow \widetilde{X} \in \mathcal{G}_{1,3}(\mathbb{R})$ is the conjugation that is founded on the reversion of the product order of 1-vectors $x \in \mathcal{G}_{1,3}(\mathbb{R})$
$\tilde{x}=x, \quad \widetilde{x y}=y x=-x y, \quad$ and $\quad \widetilde{a x y}=y x a=-a x y, \quad$ but $\quad \tilde{i}=i \quad$ and scalars $\tilde{\alpha}=\alpha$ The Clifford conjugation in $\mathcal{G}_{1,3}(\mathbb{R})$ is just operation reversion and does not comprise inversion. Just the same applies to dagger conjugation defined as the straight reversion $(X A)^{\dagger}=A X \in \mathcal{G}_{1,3}(\mathbb{R})$ To avoid ambiguity, ${ }^{409}$ we shall avoid the dagger symbol when we mean reversion inside $\mathcal{G}_{1,3}(\mathbb{R})$. The straight extension parity inversion in $\mathcal{G}_{1,3}(\mathbb{R})$ is just the change of the founding standard basis $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ to the reciprocal basis given by (7.22) as $\gamma_{k}^{-1}=-\gamma_{k}, \quad \gamma_{0}^{-1}=\gamma_{0}$, and (7.24)

$$
\gamma^{v}=g^{\mu v} \gamma_{\mu}=\gamma_{\mu}^{-1}=\overline{\gamma_{\mu}}=-\gamma_{\mu},
$$

used to find the contravariant coordinates $x^{\mu}=\gamma^{\mu} \cdot x$ (7.26) for information relations between event points in \mathfrak{D}-space as each 1 -vector information direction possibly expressed as (7.25) $x=x^{\mu} \gamma_{\mu} \in \mathcal{G}_{1,3}(\mathbb{R})$ from arbitrary orthonormal supporting basis $\left\{\gamma_{\mu}\right\}$ given coordinates $x^{\mu}=\gamma^{\mu} \cdot x$ measured by the reciprocal basis $\left\{\gamma^{\mu}\right\}=\left\{\gamma_{\mu}^{-1}\right\}$ Every $X \in \mathcal{G}_{1,3}(\mathbb{R})$ can be constructed by a linear combination of (7.41). Making operational STA

[^0]For quotation reference use: ISBN-13: 978-8797246931

[^0]: | 409 | | |
 | :---: | :---: | :---: | :---: |
 | $\widetilde{\boldsymbol{\sigma}_{k}}=-\boldsymbol{\sigma}_{k}$ as $\widetilde{\gamma_{1} \gamma_{0}}=\gamma_{0} \gamma_{1}=-\gamma_{1} \gamma_{0}$ in $\mathcal{G}_{1,3}(\mathbb{R})$, while $\boldsymbol{\sigma}_{k}^{\dagger}=\boldsymbol{\sigma}_{k}$ in $\mathcal{G}_{3}(\mathbb{R})$. And further parity inversion $\overline{\overline{\boldsymbol{\sigma}}_{\mathrm{k}}}=-\boldsymbol{\sigma}_{k}$. | | |
 | (C) Jens Erfurt Andresen, M.Sc. NBI-UCPH, | $-329-\quad$ Volume I, - Edition 2-2020-22, - Revision 6, | December 2022 |

