– III Space-	– III Space-Time Relations in Physics – 7. Relation Space of Physics – 7.1. Vision of Relations by the Development Concept												R
												Geometric Critique	C S
Т	The information event point in \mathfrak{D} -space expressed as a 1-vector (7.10) spanned from { γ_0, γ_1								$\gamma_1, \gamma_2, \gamma_3$	iet	0		
(7.25)	$_{,3}(\mathbb{R}),$							ric	21				
W	with the contravariant relation coordinate calculation												Ö
(7.26)	$x^{\mu} = \gamma^{\mu} \cdot x \in \mathbb{R}.$												
	We see that we use the reciprocal frame idea $\{\gamma^{\mu}\}$ to determine the coordinates of the information events point <i>x</i> in \mathfrak{D} -space from the geometric algebra <i>standard basis</i> $\{\gamma_0, \gamma_1, \gamma_2, \gamma_3\} \subset \mathcal{G}_{1,3}(\mathbb{R})$.												on
	7.1.3.2. The Multivector Decomposition in a Sum of Grades for D-space of Physics For the general multivector element <i>X</i> in STA, the separation in the different <i>direction grades</i> is												th
(7.27)	(7.27) $X = \langle X \rangle_0 + \langle X \rangle_1 + \langle X \rangle_2 +$					$\langle X \rangle_3 + \langle X \rangle_4 \in \mathcal{G}_{1,3}(\mathbb{R}),$ (7.9)							Ο
(7.28)	$X = \alpha + x + F + iy + vi \in \mathcal{G}_{1,3}(\mathbb{R}).$									Pure	β		
W	We have separated the multivector concept into five different <i>primary quality grades</i>												d
(7.29)	$\langle X \rangle_0 = \alpha \in \mathbb{R},$								<i>pqg</i> -0, scalar, $\dim(\mathbb{R}) = 1$,				
(7.30)	$\langle X \rangle_1 = x = (x_0 \gamma_0 + x_1 \gamma_1 + \gamma_2 + x_3 \gamma_3),$ pqg-1, 1-vector, dim $({}^1V_{1,3}) = 4$										he	0	
(7.31)	$\langle X \rangle_2 = F = (F^{10}\gamma_1\gamma_0 + F^{20}\gamma_2\gamma_0 + F^{30}\gamma_3\gamma_0) + (F^{32}\gamma_2\gamma_3 + F^{13}\gamma_3\gamma_1 + F^{21}\gamma_1\gamma_2), pqg-2, \text{ bivector, } \dim({}^2V_{3,3}) = 6,$											m	
(7.32)	$\langle X \rangle_3 = iy = i$	$y_{1} + y_{2}$	ι <mark>γ</mark> 1 +	- y ₂	⊦ y ₃ γ ₃),				vector, $\dim(^{3})$		at		
(7.33)	$\langle X \rangle_4 = vi, v \in \mathbb{R}$ pqg-4, pseudoscalar, dim										icc	H	
F de	All coordinate coefficients are real scalars x_{μ} , $y_{\mu} \in \mathbb{R}$, $\mu = 0,1,2,3$, and β_k , $\phi_k \in \mathbb{R}$, $k = 1,2,3$ of $\mathcal{G}_{1,3}(\mathbb{R})$. For this <i>grade four</i> geometric algebra, we have $2^4 = 16$ different dimensions in STA that all describe <i>qualitative</i> impact in \mathfrak{D} -space of physics. We have a mixed basis structure of STA with 16 <i>direction</i> generators												Physics
(7.34)	$\left\{ 1, \{\gamma_{\mu}\}, \{\gamma_{\mu} \land \gamma_{\nu}\}, \{i\gamma_{\mu}\}, i \}, \mu, \nu, \kappa=0,1,2,3. \text{ or } \left\{ 1, \{\gamma_{\mu}\}, \{\gamma_{\mu\nu}\}, \{\gamma_{\mu\nu\kappa}\}, i \right\} \right\}$												SI.
m di ai	(<i>X</i>) the last of the main vector concept into five different primary quarky grants (<i>X</i>) = $\alpha \in \mathbb{R}$, pqg^{-0} , scalar, $dim(\mathbb{R}) = 1$, (<i>X</i>) = $x = (x_0\gamma_0 + x_1\gamma_1 + \gamma_2 + x_3\gamma_3)$, pqg^{-1} , 1-vector, $dim(^{1}V_{1,3}) = 4$, (<i>X</i>) = $F = (F^{10}\gamma_1\gamma_0 + F^{20}\gamma_2\gamma_0 + F^{30}\gamma_3\gamma_0) + (F^{32}\gamma_2\gamma_3 + F^{13}\gamma_3\gamma_1 + F^{21}\gamma_1\gamma_2)$, pqg^{-2} , bivector, $dim(^{2}V_{3,3}) = 6$, (<i>X</i>) = $iy = i(y_0\gamma_0 + y_1\gamma_1 + y_2\gamma_2 + y_3\gamma_3)$, pqg^{-3} , trivector, $dim(^{3}V_{1,3}) = 4$, (<i>X</i>) = $iy = i(y_0\gamma_0 + y_1\gamma_1 + y_2\gamma_2 + y_3\gamma_3)$, pqg^{-4} , pseudoscalar, $dim(\mathbb{R}) = 1$. All coordinate coefficients are real scalars x_{μ} , $y_{\mu} \in \mathbb{R}$, $\mu = 0,1,2,3$, and β_k , $\phi_k \in \mathbb{R}$, $k = 1,2,3$ of $\mathcal{G}_{1,3}(\mathbb{R})$. For this <i>grade four</i> geometric algebra, we have $2^4 = 16$ different dimensions in STA that all describe <i>qualitative</i> impact in \mathfrak{D} -space of physics. We have a mixed basis structure of STA with 16 <i>direction</i> generators (1, $\{\gamma_{\mu}\}$, $\{\gamma_{\mu}\wedge\gamma_{\nu}\}$, $\{i\gamma_{\mu}\}$, i , $\mu, \nu, \kappa=0,1,2,3$. or $\{1, \{\gamma_{\mu}\}, \{\gamma_{\mu\nu\nu}\}, \{\gamma_{\mu\nu\kappa}\}, i\}$ The first part of this mixed basis is the scalar (<i>X</i>) ₀ , the last part is the pseudoscalar (<i>X</i>) ₄ and the middle part is bivector part (<i>X</i>) ₂ of the geometric STA. These middle part bivector basis can be divided into two groups: The line-extension-like as (7.5) $\sigma_k \cong \mathcal{B}_k = \gamma_k \gamma_0 = \gamma_k \wedge \gamma_0$, $k=1,2,3$, and the dual angular-area-extension-like as (7.6) e.g. $i_3 \cong i\mathcal{B}_3 = \gamma_1\gamma_2 = \gamma_1 \wedge \gamma_2$. With the use of this and (7.16) we can for the \mathfrak{D} -space structure write the mixed basis (7.34) as												CS
(7.35)													
fc	for the full geometric Space Time Algebra ((D) which we can use for all types of information												Je
event <i>entities</i> in \mathfrak{D} -space of physics. (In [22]p.7(2.16) the bivectors are called $\{\sigma_k, i\sigma_k\} = \{\mathcal{B}_k, i\mathcal{B}_k\}$.) ⁴⁰⁸													ens
7.1.3.3. Conjugation in Space-Time Algebra In STA, we use three different types of <i>conjugation</i>												dition 2	S
Table 7.1	<i>Conjugation</i> of	scalar	G1	$_{2}(\mathbb{R})$). Space	e-Time Algebra	a for D-spac	e.	G.	₃(ℝ) for 3-sp	ace.	2,	H
Туре	conjugation	R	<u>x</u>	x	$F \leftarrow \mathcal{B}_k$		iy	i.	x	B	i		E
Origin	e.g.: $X \leftarrow$	α	γ _k	γ ₀	$\gamma_k \gamma_0$	$\gamma_k \gamma_j$	iy	i	σ_k	$\sigma_i \sigma_k$	i		IT
Reversi	- ·	+α	$+\gamma_k$			$\gamma_j \gamma_k = -\gamma_k \gamma_j$	ŗ.	i	$+\boldsymbol{\sigma}_k$		$i_k - i$	$ _{0}$	
Inversi		+α		γ_0	$-\gamma_k\gamma_0$		-iy	i	$-\boldsymbol{\sigma}_k$	$\sigma_i \sigma_k$	-i	20	P
Clifford	\sim	+α	$+\gamma_k$			$\gamma_j \gamma_k = -\gamma_k \gamma_j$	yi = -iy	i	$-\boldsymbol{\sigma}_k$	$\sigma_k \sigma_j = -\sigma_j \sigma_j$	$i_k + i$		D
Even or o	odd parts:	even	od	d		even	odd	even		even	odd		Ħ
$X = \langle X \rangle_0 + \langle X \rangle_1 + \langle X \rangle_2 + \langle X \rangle_3 + \langle X \rangle_4 \langle A \rangle_1, A_+ = \langle A \rangle_0 + \langle A \rangle_2, \langle A \rangle_3$													SO
⁴⁰⁸ We use bold $\sigma_k \in \mathcal{G}_3(\mathbb{R})$ to indicate 1-vector in 3-space algebra and $\sigma_k \in \mathcal{G}_{1,3}(\mathbb{R})$ indicate a bivector member in STA of \mathfrak{D} -space.													lresen
© Jens Erfurt Andresen, M.Sc. Physics, Denmark - 328 - Research on the a priori of Physics - December 2022													
-	For quotatio	n re	efere	nce	use:	ISBN-13: 9	978-8797	7246	5931			-	

 $\widetilde{(XA)} = (XA)^{\sim} = \widetilde{A} \, \widetilde{X} \, .$ (7.37)We have the simple relation $(\tilde{X}) = (\tilde{X})^{\sim} = X$. Hence for the product we call the Clifford conjugation quadratic form $X\widetilde{X} = \widetilde{X}X$, we have the conjugation invariance in \mathfrak{D} -space $(X\widetilde{X})^{\sim} = \widetilde{X}X = X\widetilde{X}$ (7.38) $\in \mathcal{G}_{1,3}(\mathbb{R}).$ 7.1.3.4. Reversion of the Odd Chirality Volume Pseudoscalar i in the $\mathcal{G}_3(\mathbb{R})$ Algebra for 3-space In 3-space treated in chapter 6, we use the $\mathcal{G}_3(\mathbb{R})$ algebra with even subalgebra $\mathcal{G}_{0,2}(\mathbb{R}) \sim \mathcal{G}_3^+(\mathbb{R})$ $\subset G_3(\mathbb{R})$. The two dual concepts connects; the odd 1-vectors $\mathbf{x} \in G_3^-(\mathbb{R}) \subset G_3(\mathbb{R})$ and the even bivectors $\mathbf{B} \in \mathcal{G}_3^+(\mathbb{R})$ by the dextral chiral unit pseudoscalar *i* that is endowed with the *quality* $i^2 = -1$. In $\mathcal{G}_3(\mathbb{R})$. This unit pseudoscalar inherits *conjugation qualities* expressed in Table 7.1: The *reversion* of this is $i^{\dagger} = -i$ due to the definition $i \coloneqq \sigma_3 \sigma_2 \sigma_1 \Rightarrow (\sigma_3 \sigma_2 \sigma_1)^{\dagger} = \sigma_1 \sigma_2 \sigma_3 = -i$. Further, the extension parity inversion gives $i^- = -i \in (\sigma_3 \sigma_2 \sigma_1)^- = (-\sigma_3)(-\sigma_2)(-\sigma_1) = -i$. The combination of these two *conjugations* gives the *Clifford*~*conjugation* $(i^{\dagger})^{-} = (i)^{\sim} = \widetilde{i} = i \in \mathcal{G}_{2}(\mathbb{R}),$ (7.39)that is a combined *inversion and reversion* as the *conjugation* $A \to \widetilde{A} \in \mathcal{G}_3(\mathbb{R})$ in \mathfrak{Z} -space. Right multiplying the dextral chirality unit pseudoscalar $i \in \mathcal{G}_{2}(\mathbb{R})$ with the information development unit γ_0 we achieve the positive helicity unit pseudoscalar $i\gamma_0 \equiv i \in \mathcal{G}_{1,3}(\mathbb{R})$ of STA for the dextral development volume in D-space of information in physics. 7.1.3.5. Reversion of the Even Helicity Pseudoscalar *i* in the Algebra $\mathcal{G}_{1,3}(\mathbb{R})$ for \mathfrak{D} -space In \mathfrak{D} -space the unit dextral helicity pseudoscalar (7.11) $i \coloneqq \gamma_1 \gamma_2 \gamma_3 \gamma_0$ is conjugation invariant. $i^- = \overline{i} = i$, and $i^- = \widetilde{i} = i$, because of $\gamma_1 \gamma_2 \gamma_3 \gamma_0 = \gamma_0 \gamma_3 \gamma_2 \gamma_1$. $i^{\dagger} = i$. (7.40)For every X in $\mathcal{G}_{1,3}(\mathbb{R})$, the *Clifford conjugation* $X \to \widetilde{X} \in \mathcal{G}_{1,3}(\mathbb{R})$ is the conjugation that is founded on the reversion of the product order of 1-vectors $x \in \mathcal{G}_{1,3}(\mathbb{R})$ $\widetilde{x} = x$, $\widetilde{xy} = yx = -xy$, and $\widetilde{axy} = yxa = -axy$, but $\widetilde{i} = i$ and scalars $\widetilde{\alpha} = \alpha$. (7.41)The Clifford conjugation in $\mathcal{G}_{1,3}(\mathbb{R})$ is just operation reversion and does not comprise inversion. Just the same applies to dagger conjugation defined as the straight reversion $(XA)^{\dagger} = AX \in \mathcal{G}_{1,3}(\mathbb{R})$. To avoid ambiguity,⁴⁰⁹ we shall avoid the dagger symbol when we mean reversion inside $\mathcal{G}_{1,3}(\mathbb{R})$. The straight *extension parity inversion* in $\mathcal{G}_{1,3}(\mathbb{R})$ is just the change of the founding standard basis $\{\gamma_0, \gamma_1, \gamma_2, \gamma_3\}$ to the reciprocal basis given by (7.22) as $\gamma_k^{-1} = -\gamma_k$, $\gamma_0^{-1} = \gamma_0$, and (7.24) $\gamma^{\nu} = g^{\mu\nu}\gamma_{\mu} = \gamma_{\mu}^{-1} = \overline{\gamma_{\mu}} = -\gamma_{\mu},$ (7.42)used to find the contravariant coordinates $x^{\mu} = y^{\mu} \cdot x$ (7.26) for information relations between event points in D-space as each 1-vector information direction possibly expressed as (7.25) $x = x^{\mu} \gamma_{\mu} \in \mathcal{G}_{1,3}(\mathbb{R})$ from arbitrary orthonormal supporting basis $\{\gamma_{\mu}\}$ given coordinates $x^{\mu} = \gamma^{\mu} \cdot x$ measured by the reciprocal basis $\{\gamma^{\mu}\} = \{\gamma_{\mu}^{-1}\}$ Every $X \in \mathcal{G}_{1,3}(\mathbb{R})$ can be constructed by a linear combination of (7.41). Making operational STA $\widetilde{\mathbf{\sigma}_k} = -\mathbf{\sigma}_k$ as $\widetilde{\gamma_1\gamma_0} = \gamma_0\gamma_1 = -\gamma_1\gamma_0$ in $\mathcal{G}_{1,3}(\mathbb{R})$, while $\mathbf{\sigma}_k^{\dagger} = \mathbf{\sigma}_k$ in $\mathcal{G}_3(\mathbb{R})$. And further parity inversion $\overline{\mathbf{\sigma}_k} = -\mathbf{\sigma}_k$. © Jens Erfurt Andresen, M.Sc. NBI-UCPH, - 329 For quotation reference use: ISBN-13: 978-879724693

 $\begin{array}{l} X = \alpha + x + F + iy + vi \\ \widetilde{X} = \alpha + x - F - iy + vi \end{array} \right\} \in \mathcal{G}_{1,3}(\mathbb{R}).$

(7.36)

In the $\mathcal{G}_{1,3}(\mathbb{R})$ algebra the Clifford conjugated is the same as the reversion in [23]p.5,(20)-(21),

Where the general multivector element form (7.28) has the \mathfrak{D} -space reversion conjugation

We take the product XA write another multivector as e.g., $A = \alpha_A + a + F_A + ib + v_A i$, and find