Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931
7.1.2. The Space-Time as Development Information of Extension Relation is Called \mathfrak{D}-space

What classically is called Space in physics we in this book call a 3-space quality, and we have developed the Geometric Algebra $\mathcal{G}_{3}(\mathbb{R})$ concerning four grades of the traditional three dimensions. To make measurements of the extensions we need a signal of information transmitted over that physical space extension. We have an a priori synthetic judgment that the speed of information development is isotropic finite relative to all physical directions in 3 -space.
The development direction into the future is obvious total independent of the space extensions, thus orthogonal to these. The quantitative measure of development quality with a parameter is first in this book introduced in § 1.4.1.1, etc. as a resulting real continuous monotonously growing development parameter $t_{c} \in \overrightarrow{\mathbb{R}}$, and further quantified through chapter 3 as a carrier clock.

- In the classical tradition the impact of this development parameter is called Time.

Relations between entities over physical Space extension depend on the measurement of the magnitude of extension separation, don by a (light) signal with the speed of information c. Traditionally this extension measure relation is simply expressed as $\left|\mathrm{x}_{\mathrm{AB}}\right|=c\left|t_{\mathrm{B}}-t_{\mathrm{A}}\right| \in \mathbb{R}$. Therefore, we simply have the traditional expression Space-Time for the information dependent development relations in \mathfrak{D}-space between the extension separated entities in \mathfrak{Z}-space.
7.1.3. The Full Geometric Space-Time Algebra $\mathcal{G}_{1,3}(\mathbb{R})$ for Physical Relations in \mathfrak{D}-space For a general multivector element $X \in \mathcal{G}_{1,3}(\mathbb{R})$ as the geometric Space-Time algebra (STA) we can separate into five different grades of the direction ideas for a now known \mathfrak{D}-space

$$
X=\langle X\rangle_{0}+\langle X\rangle_{1}+\langle X\rangle_{2}+\langle X\rangle_{3}+\langle X\rangle_{4}=\sum_{r=0}^{4}\langle X\rangle_{r} \quad \in \mathcal{G}_{1,3}(\mathbb{R})
$$

We, humans, define this STA algebra from the traditional mathematical idea of a 1-vector space over the real number field $\mathbb{R}^{4} \rightarrow V_{1,3}(\mathbb{R})$ with a \mathfrak{D}-space physical directional founded orthonormal unit basis $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$, that is chosen with a Minkowski metric Clifford signature $(+,-,-,-)$ where (7.3)-(7.4) are valid. The linear 1-vector space $V_{1,3}(\mathbb{R})$ fulfil the additional algebraic rules (4.1)-(4.11) and the linear combination represents every possible 1-vector ${ }^{405}$
$\langle X\rangle_{1}=x=x^{0} \gamma_{0}+x^{1} \gamma_{1}+x^{2} \gamma_{2}+x^{3} \gamma_{3}=\sum_{\mu=0}^{3} x^{\mu} \gamma_{\mu} \quad \in V_{1,3}(\mathbb{R}) \subset \mathcal{G}_{1,3}(\mathbb{R})$.
Now we form the full multiplication algebra $\mathcal{G}_{1,3}(\mathbb{R})$ following the associative and left or right distributive rules (5.38)-(5.42) with the maximum of fourth grade for the multiplications. The top grade four $\langle X\rangle_{4}$ is the helicity pseudoscalar direction quality in STA. (a $4 \mathrm{D} \mathfrak{D}$-volume) For this primary quality of fourth grade direction (pqg-4) in \mathfrak{D}-space of physics, we define by orthonormality of the outer product the unit dextral helicity pseudoscalar
$i:=\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{0}=\gamma_{1} \wedge \gamma_{2} \wedge \gamma_{3} \wedge \gamma_{0}=\gamma_{0} \wedge \gamma_{3} \wedge \gamma_{2} \wedge \gamma_{1}=\gamma_{0} \gamma_{3} \gamma_{2} \gamma_{1}$.
For all possible elements X in consideration, we demand $i \wedge X=\gamma_{3} \wedge \gamma_{2} \wedge \gamma_{1} \wedge \gamma_{0} \wedge X=0$ to be in STA $\forall X \in \mathcal{G}_{1,3}(\mathbb{R}) \Leftrightarrow \quad i \wedge X=0=X \wedge i$, or $\langle X\rangle_{5}=0$, etc., grades pqg- $r \leq 4$, exeption $X=\langle X\rangle_{0} \in \mathbb{R}$. Further by orthonormality $\gamma_{\nu} \gamma_{\mu}=\gamma_{\nu} \wedge \gamma_{\mu}$, we note the anti-commutation of the six basic bivectors $\gamma_{\nu} \gamma_{\mu}=-\gamma_{\mu} \gamma_{v}$, for $\mu \neq v, \mu, v=0,1,2,3, \quad$ the direction of second grade (pqg-2) in \mathfrak{D}-space. And we can form four basis trivectors directions, that have reversed orientations too:

$$
\gamma_{1} \gamma_{2} \gamma_{3}=-\gamma_{3} \gamma_{2} \gamma_{1}, \quad \gamma_{2} \gamma_{3} \gamma_{0}=-\gamma_{0} \gamma_{3} \gamma_{2}, \quad \gamma_{3} \gamma_{1} \gamma_{0}=-\gamma_{0} \gamma_{1} \gamma_{3}, \quad \gamma_{1} \gamma_{2} \gamma_{0}=-\gamma_{0} \gamma_{2} \gamma_{1}
$$

These primary quality of third grade direction (pqg-3) is dual to those offirst grade (pqg-1)

$$
i \gamma_{0}=\gamma_{1} \gamma_{2} \gamma_{3}, \quad i \gamma_{1}=\gamma_{2} \gamma_{3} \gamma_{0}, \quad i \gamma_{2}=\gamma_{3} \gamma_{1} \gamma_{0}, \quad i \gamma_{3}=\gamma_{1} \gamma_{2} \gamma_{0}
$$

${ }^{05}$ We here use contravariant ${ }^{289}$ coordinates $x^{\mu} \in \mathbb{R}$ due to mixed signature (7.25) \downarrow, and italic x^{μ} in stet of Greek $\lambda^{\mu} \in \mathbb{R}$ for the field. Remark that we no longer use bold letters for the elements e.g., $X, x \in \mathcal{G}_{1,3}(\mathbb{R})$. This included the reals $x_{\mu} \in \mathbb{R} \subset \mathcal{G}_{1,3}(\mathbb{R})$ in STA. ${ }^{406}$ Remark the difference to the Hestenes [6] etc., definition $i=\gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}=-i$, due to sequence $\sigma_{3} \sigma_{2} \sigma_{1}$ used in this book. (reversed) © Jens Erfurt Andresen, M.Sc. Physics, Denmark $\quad-326-\quad$ Research on the a priori of Physics - \quad December 2022

For quotation reference use: ISBN-13: 978-8797246931

What physical directional quality dos these four trivectors represent in \mathfrak{D}-space.
The first $i \gamma_{0}=-\gamma_{0} i$ represent the dextral trivector structure direction of STA relative to the physical active helicity pseudoscalar directional primary quality of grade four in STA geometry. The three others represent the orthogonal angular momenta directions of the possible active cyclic oscillations in space like extension planes, e.g., see Table 5.3. The connection interaction products of two of these trivectors just give a bivector quality, e.g. $i \gamma_{2} i \gamma_{1}=\gamma_{1} \gamma_{2} \sim \boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}$. Special for the six orthonormal bivectors of second grade (7.13) we have the dual relations
$\gamma_{2} \gamma_{3}=i \gamma_{1} \gamma_{0}$,
$\gamma_{3} \gamma_{1}=i \gamma_{2} \gamma_{0}$,
$\gamma_{1} \gamma_{2}=i \gamma_{3} \gamma_{0}$
$\in \mathcal{G}_{1,3}(\mathbb{R}) \sim \mathcal{G}_{4}(\mathbb{R})$.
$\sim \boldsymbol{i}_{1}=\boldsymbol{i} \sigma_{1}$,
$\sim \boldsymbol{i}_{2}=\boldsymbol{i} \sigma_{2}$,
$\sim \boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}$
$\in \mathcal{G}_{3}(\mathbb{R})$.
Now we know all four directional grades. We also have the non-directional zero grade real scalar field \mathbb{R} founding the span of the full linear space of $\mathcal{G}_{1,3}(\mathbb{R})$ as the geometric algebra STA. We use the general definition of the inner product (5.57) on the 1-vector basis $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$

This is called for the metric tensor for the orthonormal standard frame $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ for STA,

For the orthogonal situation for $\mu \neq v$ we have the appreciated anti-commutator relation:
$\gamma_{\mu} \gamma_{\nu}+\gamma_{\nu} \gamma_{\mu}=0$
This not only expresses the algebraic linear independency but also gives the possibility to manage the implicit hidden interdependent connectivity between the direction qualities of physics.
The unit metric for the standard frame $\left\{\gamma_{\mu} ; \mu=0,1,2,3\right\}$ is (with no $\mu \mu$ sum)

$$
g_{\mu \mu}=\gamma_{\mu} \cdot \gamma_{\mu}=\gamma_{\mu} \gamma_{\mu}=\gamma_{\mu}^{2} \Rightarrow\left(\gamma_{0}^{2}, \gamma_{1}^{2}, \gamma_{2}^{2}, \gamma_{3}^{2}\right)=(1,-1,-1,-1) \Rightarrow \text { signature }(+,-,-,-) .
$$

Here we recall the most fundamental concept of making measurements in physics is the unit count named γ_{0} for the development causal direction FORWARD. This is independent $\overline{\gamma_{0}}=\gamma_{0}$ (5.300) of the Descartes extension parity inversion conjugation $\overline{\gamma_{k}}=-\gamma_{k}$ (5.301) for the three directions For each of these three perpendicular isometric directions, we demand the measure balance (5.302) $\gamma_{0}^{2}+\gamma_{k}^{2}=0 \quad k=1,2,3$.
This is the absolute fundamental relative geometrical information measure relation of physics. The multiplicative inverse of a multivector component is defined in (4.76) $x^{-1}=x / x^{2}$ fulfilling $x \cdot x^{-1}=1 \quad \Rightarrow \quad \gamma_{\mu} \cdot \gamma_{\mu}^{-1}=1, \quad$ hence:
We call the multiplicative inverse γ_{μ}^{-1} the reciprocal basis 1 -vector and rename it $\gamma^{\mu}:=\gamma_{\mu}^{-1}$
By this we achieve the reciprocal basis frame $\left\{\gamma^{0}, \gamma^{1}, \gamma^{2}, \gamma^{3}\right\}$ defined through the relation

$$
\gamma_{\mu} \cdot \gamma^{v}=\gamma^{v} \cdot \gamma_{\mu}=\delta_{\mu}^{\nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \quad \text { or the transformations } \quad \gamma_{\mu}=g_{\mu \nu} \gamma^{v}, \quad \gamma^{v}=g^{\mu v} \gamma_{\mu}
$$

The idea is so simple that the two reciprocal basis is extension parity inversion of each other

$$
\left\{\gamma^{0}, \gamma^{1}, \gamma^{2}, \gamma^{3}\right\}=\overline{\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}}=\left\{\gamma_{0},-\gamma_{1},-\gamma_{2},-\gamma_{3}\right\}, \quad \text { measure } \gamma^{0}=\gamma_{0} \text { is covariant. }
$$

$$
\text { We remark that }\left\{\gamma^{\mu}\right\} \text { also has the signature }(+,-,-,-) \Leftarrow\left(\gamma^{0^{2}}, \gamma^{1^{2}}, \gamma^{2}, \gamma^{32}\right)=(1,-1,-1,-1) \text {. }
$$

${ }^{407}$ We use two different nomenclature for the static eternal dextral pseudoscalar $\boldsymbol{i} \in \mathcal{G}_{3}(\mathbb{R})$ of \mathcal{Z}-space and the active helicity pseudoscalar $i \in \mathcal{G}_{1,3}(\mathbb{R}) \sim \mathcal{G}_{4}(\mathbb{R})$. These semiotic different symbols i and i refer to different physical qualities of Nature In our ethical work of physics, we shall distinguish these. In traditional aesthetics of mathematics, the idea of $\sqrt{-1}$ has been one monotheistic imaginary unit $i=\operatorname{Im}(1) \Leftarrow \sqrt{-1}$ with $i \in \mathbb{C}$ of the complex number field. But in the geometry of physics, we are forced to distinguish the different grades of direction although we have the similarity: $(\sqrt{-1})^{2}=i^{2}=\boldsymbol{i}^{2}=\boldsymbol{i}^{2}=i^{2}=-1$ It is obvious that our universal nature is not that fragmented, so the connected inherence is written $i \vec{\sim} \boldsymbol{i} \gtrsim \boldsymbol{i} \approx i \vec{\sim} \sqrt{-1}$. (C) Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-327-\quad$ Volume I, - Edition 2-2020-22, - Revision 6, \quad December 2022

