For $4<Z \leq 10$ we have shell $n=2, \ell_{5}=\ell_{6}=\ell_{7}=\ell_{8}=\ell_{9}=\ell_{10}=1, m_{l}=-1,0,1, m_{1 / 2, i}= \pm 1 / 2$, six possible electron stats in the first subshell, with spin compensation $m_{1 / 2, i}+m_{1 / 2, i+1}=0$.
6.7.4. The Spatial Wavefunction Probability Distribution Structure of atoms

In the quantum mechanics tradition, the solution of the Schrödinger equation for a hydrogen-like atom (Bohr-Rutherford) for one electron in spherical coordinates is
(6.533) $\quad \psi_{n, \ell, m_{\ell}}\left(r_{i}, \theta, \varphi\right)=R_{n, \ell}\left(r_{i}\right) \cdot Y_{\ell}^{m_{\ell}}(\theta, \varphi)$,
where for each electron $\Psi_{1 / 2, i}$
$R_{n, \ell}\left(r_{i}\right)$ is the radial probability distribution function,
(Figure 6.26)

and

(6.535) $\quad Y_{\ell}^{m_{\ell}}(\theta, \varphi)$ is the spherical harmonic function for the probability distribution, (Figure 6.27) around the nucleus with the atomic number Z.
The index $i=i\left(n, \ell, m_{\ell}\right)=1,2,3 \ldots Z$ we dedicate for each electron $\Psi_{1 / 2, i}$, in the idea of sequential filling $Z=1,2,3, \ldots$ of the shell structure (n, ℓ, m_{ℓ}) following Madelung rule indicated in Figure 6.28, and Hund's rule filling the free subshell energy level, first without spin pairing.
(6.536) The subshells are $\left\{\begin{array}{r}\ell=0,1,2,3,4, \ldots \\ \text { named. }\end{array}\right.$

In principle, each electron has its autonomous chronometric reference, and we may demand that its spatial distribution over the development of its interaction with the surroundings governed by the atomic nucleus is normalized to unity
(6.537)

$$
\int_{3}\left|\psi_{n, \ell, m_{\ell}}\left(r_{i}, \theta, \varphi\right)\right|^{2} d \tau_{i}=1, \quad \text { where } d \tau_{i}=d r_{i} d \theta d \varphi
$$

We may presume that each subshell has the same r_{i} external reference for the same energy level of the binding in the specified atom Z.

We will not in this book go further into the theories for the practise atomic structure and address the reader to the general rich literature on the subject.

Figure $6.26 r_{i} \rightarrow\left(R_{n, \ell}\left(r_{i}\right) r_{i}\right)$ https://chem.libretexts.org/...
${ }^{400}$ This primary directional quality of grade three chiral pseudoscalar unit $\boldsymbol{i}^{2}=-1 \Rightarrow \boldsymbol{i} \sim \sqrt{-1}$, is a quality that is fundamental different from the complex number field \mathbb{C} imaginary unit $i \in \mathbb{C}$ that possesses a plane pseudoscalar quality $i^{2}=1 \Rightarrow i \sim \sqrt{-1}$. This reason is that the complex number plane \mathbb{C} from its idea does not possess any geometric direction in physical space and thus commutate with any number $\forall z \in \mathbb{C}$. When we opposite take the directional geometric plane spanned by $\mathrm{X}=x_{1} \boldsymbol{\sigma}_{1}+x_{2} \boldsymbol{\sigma}_{2}$ we hav the unit bivector $i=\sigma_{2} \sigma_{1}$ that also possesses the quality $i^{2}=-1 \Rightarrow i \sim \sqrt{-1}$, that anticommute with $\boldsymbol{\sigma}_{1}, \sigma_{2}$ and thus $\forall x$. Ontologically existence in a plane, the directive unit $i \not \equiv i$. Sometimes i is called the anticommuting pseudoscalar for the plane. (C) Jens Erfurt Andresen, M.Sc. NBI-UCPH, -319 _ Volume I, - Edition 2-2020-22, - Revision 6, \quad December 2022

