Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

The energy change between these electron orbital levels results in a spectral energy exchange after Rydberg's formula for the Hydrogen spectrum
(6.529) $\hbar \omega \propto\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$

From this, we conclude to know that the binding energy level of the Hydrogen electron is

$$
\text { in general, for atoms } E_{n} \propto-\frac{Z^{2}}{n_{2}^{2}}
$$

We distinguish the different atom nucleus charge quantities by their atomic number Z, which corresponds to the number of electrons in each atom.

6.7.3.3. Atomic Shells and Subshells

This (6.530) gives electrons $\Psi_{1 / 2}$ in energy levels of a principal quantum number $n \in \mathbb{N}$.
These so-called energy shells do not imply any specific direction at all.
For the directional orbital angular momentum, we introduce a subshell quantum number

$$
p \in \mathbb{N}, \quad \ell<n
$$

that is counted exclusively from spin $1 / 2$ quantum number $m_{1 / 2}= \pm 1 / 2$ for each electron $\Psi_{1 / 2}$.
For the unexcited Hydrogen first shell $n=1$, the electron does not possess any orbital angular momentum $\ell=0$ and its spin $1 / 2$ angular momentum $\left|\mathrm{L}_{1 / 2}\right|=\hbar 1 / 2$ is compensated by the nucleus or easier by a sibling Hydrogen atom in a H_{2} molecule.
For the unexcited Helium, where there can be two electrons $\Psi_{1 / 2}$ with shell number $n=1 \Rightarrow l=0$ Both have no orbital angular momentum $\ell=0$ (no subshell). The two-electron spin $1 / 2$ balance each other in a spherical symmetric atom
In the Bohr-Rutherford atomic model, it is common to separate and ignore the inner $\operatorname{spin} 1 / 2$ angular momentum of each entity $\Psi_{1 / 2}$. The reason is that spin is neutralised in spin pairs e.g., as (6.527).
The classical electron was viewed as a point particle. The atomic electrons are now just an
oscillating entity in shells and subshells revolving around the nucleus.
For shell principal quantum number $n>1$ we can have subshell numbers $\ell=0,1,2, \ldots n-1$. For the direction projection of the orbital angular momentum, we have the quantum integer number m_{l} where $\left|m_{\ell}\right| \leq \ell \Rightarrow m_{\ell}=-\ell \ldots-1,0,1 \ldots \ell$.
We make the resultant $m=m_{\ell} \pm 1 / 2$ that is a non-integer, half-valued, for each single electron $\Psi_{1 / 2}$ From the orbital angular momentum number ℓ of each electron $\Psi_{1 / 2}$ we find the total spin as

$$
\text { (6.532) } j=|\ell \pm 1 / 2| \quad \Rightarrow \quad l=j+1 / 2 \quad \text { or } \quad l=j-1 / 2
$$

6.7.3.4. Categories of Atomic Quantum Numbers

For the overall wavefunction Ψ for the atomic electrons, we use the Casimir scalar operator J^{2} in eigenvalue equation $J^{2} \Psi=j(j+1) \Psi$, (6.335), (6.347). Ignoring the electron spin $1 / 2$ we get by $j \rightarrow \ell$ the overall eigenvalue $\ell(\ell+1)$ for electron orbital directional states in atoms.

- The Bohr atom model gives direction-free scalar energy principal shell numbers $n \in \mathbb{N}$
- The directional angular revolving subshell quantum numbers $\ell \in \mathbb{N}, \quad \ell<n$
- The direction projection of angular momentum with magnetic impact $m_{\ell} \in \mathbb{N},\left|m_{\ell}\right|<n$.
- The directional angular $\operatorname{spin}^{112}$ of each electron with magnetic emergence $m_{1 / 2}= \pm 1 / 2 \rightarrow \pm 1 / 2 \hbar e / m_{e}$.

These four number quantities are in combination exclusive unique for each electron in an atom In Table 6.3 we have tried to show the connection between these quantum numbers for each electron participating in one atom.
Internal in one atom the extension exclusion principle demand only one state of each occupied.

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

