Restricted to brief peruse for research，reviews，or scholarly analysis，© with required quotation reference：ISBN－13：978－8797246931

We can use the angular frequency of the background radiation as the clock，but all other radio frequencies can be used．Anyway，there will always be a soup（a so－called field ${ }^{397}$ ）of low frequency subtons with the relative speed of information around each free electron． Some of these will be Compton bounced in interaction with the electron．
These causal outwards propagating subtons will carry information about the charge and spin，from this electron into the future with the speed of light． We can for our intuition display this as line rays starting in the presumed locality intersection center point of electron entity $\Psi_{1 / 2}$ ．Such Faraday－like field lines are only an illustration of straight past null line trajectories ${ }^{398}$ of subtons displayed in the local frame of one electron by Figure 6.25 ．

6．7．Multiple Numbers of Spin $1 / 2$ Fermions

We will not go into the emergence of a classical force field in this volume．

6．7．1．External Qualities of Charged Fermions

We will not treat nuclear particles in this Chapter，but only uses atom nucleus as orbital centres．
6．7．1．1．Identical Charged Fermions
We know from the classical idea of charge，that two bodies with the same sign of charge repel each other．All experience indicates that two identical charged fermions repel too
6．7．1．2．Opposite Charge Fermions
Oppositely charged bodies attract each other．The same for an electron and a positron attraction． There is nothing in our experience that tells us，that they avoid each other．We have the idea that they annihilate in a gamma burst．
6．7．1．3．The Bohr－Rutherford Atomic Model
The atom－model idea with a central massive nucleus of an integer－numbered positive charge attracting the same number of electrons（orbiting around）．For Hydrogen we have just one positive charge attracting one electron．But the nucleus（proton）has a property that the electron avoids， possibly in some similar way as the electron avoids its identical siblings．The category of fermions demands the ability to distinguish the different entities whether they are identical or not \S 6．6．3．
6．7．2．Mutual Exclusive Extension of Fermions
We have seen that fermions possess locality in 3 －space．Identical fermions have to be differentiated by space extension．This exclusion idea has been essential since Leibniz．${ }^{399}$ It has been widely discussed，that different extended solids cannot possess the same locality in space． The local radial extension of a fermion is the magnitude of its unitary versor wavefunction that by definition is $\left|\Psi_{1 / 2}\right|=1$ in its autonomous norm $|\omega|=1$ ．
In traditional external lab system norm，we estimate the radius of a fermion from the internal frequency energy $\omega_{1 / 2}$ expressed as an external mass relative to a frequency standard e．g．［s ${ }^{-1}$ ］as
（6．524）$\quad r_{1 / 2}=\frac{c}{\omega_{1 / 2}} \sim \frac{2 \hbar c}{m c^{2}} \sim \frac{2 \hbar}{m c}$ ，
for the electron：$r_{e} \sim 0.77 \cdot 10^{-12}$ meter $\sim \frac{1}{68}$ Bohr－radius．
This estimate shows that there is sufficient extensive space for the electron to stay in its own exclusive autonomous right in the orbitals of an atom．
6．7．2．2．The Pauli Exclusion Principle
The classical exclusion principle was reformulated by Pauli in 1925 to the exclusion principle for the electron states，which also included the two spin $1 / 2$ states of the electrons．E．g．，the spin $u p$
${ }^{397}$ Avoid the classical field，where all clocks have stopped in an eternal GOD＇s eye view．Thomas Aquinas＇s eternal－time \Leftarrow GOD． ${ }^{398}$ Trajectories as a projection of null lines from an abstract Minkowski \mathcal{B}－plane orthogonal to 3 space，see section 5．7． ${ }^{399}$ Two equal－sized solid stones cannot be merged to fill the same space of just one stone．The same for two water drops．
© Jens Erfurt Andresen，M．Sc．Physics，Denmark
For quotation reference use：ISBN－13：978－8797246931

Figure 6.25 null lines of an information field from a charged electron． As a 2 D projection from 4－dimensional idea
and down stats of two electrons in a Helium atom，etc．for orbital electrons in atoms，and exclusions for valence electrons and further to conduction electrons in solid state physic．

6．7．3．Orbital Angular Momentum

For the fundamental fermion category，we have presumed the first excited state of 3 －space with quantum number $j=\frac{1}{2}$ in the treatment of the concept of all entities $\Psi_{1 / 2}$
The exclusion principle seems to avoid further excitations to new indivisible entities $\Psi_{j>1 / 2}$ ． From this，we conclude a judgment that higher values $j=1, \frac{3}{2}, 2, \frac{5}{2}, \ldots$ represent multiple spin $1 / 2$ fermion entities $\Psi_{1 / 2}$ in external interactions mutually excluding each other．
6．7．3．1．The Squared Perpendicular Part of Orbital Integer Quantum Number Excitation For $j=1$ we have three states $m=-1,0,+1$ ，and $\lambda=2$ ，continued from（6．361）－（6．364） （6．525）$\quad\langle\lambda, m| J^{2}-J_{3}^{2}|\lambda, m\rangle=\langle 2, \pm 1| J_{\perp}^{2}|2, \pm 1\rangle \sim \hbar^{2} \lambda-\hbar^{2} m^{2}=\hbar^{2} 2-\hbar^{2}(\pm 1)^{2}=\hbar^{2} 1$ ，$\quad \times$ two states， （6．526）$\langle\lambda, m| J^{2}-J_{3}^{2}|\lambda, m\rangle=\langle 2,0| J_{\perp}^{2}|2,0\rangle \sim \hbar^{2} \lambda-\hbar^{2} m^{2}=\hbar^{2} 2-\hbar^{2}(\pm 0)^{2}=\hbar^{2} 2$ ，$\quad \times$ two states． This last（6．526）is e．g．the case for the first shell with principal quantum number $n=1$ of a He － lium atom with two electrons $\Psi_{1 / 2,1}$ and $\Psi_{1 / 2,2}$ in the subshell orbital angular momentum quantum number $\ell_{1}=\ell_{2}=0$ ，each $j_{1}=j_{2}=1 / 2$ with spin $m_{1 / 2,1}= \pm 1 / 2$ and $m_{1 / 2,2}=\mp 1 / 2$ ，making up the total angular momentum $j=j_{1}+j_{2}=\left|\ell_{1} \pm 1 / 2\right|+\left|\ell_{2} \bar{\mp} 1 / 2\right|=1$ ，and for Helium the total spin is
（6．527）$\quad m_{1 / 2,1}+m_{1 / 2,2}=0 \Rightarrow\langle 2,0| J_{3}|2,0\rangle=\mathrm{L}_{3}^{\mathrm{He}}=0, \quad$ with two indistinguishable states $1,2 \leftrightarrow 2,1$ ．
The situation is completely different for the first case（6．525），the two spins of the entities $\Psi_{1 / 2,1}$ and $\Psi_{1 / 2,2}$ are parallel aligned $m_{ \pm}=m_{1}+m_{2}= \pm 1$ ．
My best guess for an example is an electron－positron annihilation to a gamma burst of two subtons $\gamma_{+}+\gamma_{-}$of opposite helicities of spin ± 1 ，for the opposite 1 －vector propagation directions，containing the total frequency energy equal balance to the two internal oscillations， that external is perceived as masses for the two entities $\Psi_{1 / 2,1}$ and $\Psi_{1 / 2,2}$ ．The two propagating spins $m_{+}=+1$ and $m_{-}=-1$ with opposite orientated direction is then given
（6．528）$\quad m_{+}+m_{-}=0 \Rightarrow\langle 2, \pm 1| \mathbf{j}_{3}|2, \pm 1\rangle= \pm j_{3}^{\gamma}= \pm \hbar 1 \sigma_{3}= \pm \hbar \vec{L}_{3}^{ \pm}$
The new thing is that the propagating development into the future result in two opposite helicity orientations of a 1－vector direction into the extension of 3 －space by two subtons Ψ_{+1}, Ψ_{-1} ． （vice versa，possibly creating a pair from two gamma rays interacting in a forceful field）．

