Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

- This is the negation judgment of the quality angular momenta fermion locality $\Psi_{\text {? }} \notin \mathcal{Z}$. The six orthogonal outwards are just the cubic symmetry of the Cartesian system, in § 6.6.1.3. Higher than four separations of outwards orientated directions will not help us further. They can always be linearly combined into three independent that project to the fourth external direction. The thought of multiple excitations of entities $\Psi_{1 / 2}$ in one and the same location intersection of $\pm \frac{1}{2} \boldsymbol{i}_{1}, \pm \frac{1}{2} \boldsymbol{i}_{2}, \pm \frac{1}{2} \boldsymbol{i}_{3}$ is not allowed. Alternatively, it will just be the same, this we express as
(6.514) $\quad\left(\pm \frac{1}{2} \boldsymbol{i}_{k}\right) \underset{\text { locality }}{\text { same }}\left(\pm \boldsymbol{i}_{2} \boldsymbol{i}_{k}\right) \rightarrow\left(\pm \frac{1}{2} \boldsymbol{i}_{k}\right)$, internal for the one local exclusive $\Psi_{1 / 2}$ unit.
- This is the limitation of the exclusive indivisible unity of one locality entity $\Psi_{1 / 2}$ in 3 -space. ${ }^{394}$ From this, we make a judgment of the main category of a quality we call spin $1 / 2$ fermions, which individual exclusive indivisible unit entity of locality we call one $\Psi_{1 / 2}$.
This we now call the Categorical Imperative for the existence of fermions in physics.
6.6.3.2. The Categorical Classification of Identical Spin $1 / 2$ Fermions in 3 Space

We have seen that the a priori transcendental model of the autonomous regular tetraon symmetry for each entity $\Psi_{1 / 2}$ in the fundamental category of spin $1 / 2$ fermions will make it possible for us to limit the number to sixteen classes of different identical fermions. These categorial classes we already have listed above in (6.473), resulting in the eight different quantities q, (6.513).
The four fractionated q^{\prime} s have each three colour states in all eight extra distinguishable classes. Each of these individual fermions possesses two external spin $1 / 2$ stats:
progressive spin $(+)(u p), \quad$ and
retrograde spin $(-)$ (down).
Traditional this is just called spin up or spin down. This so-called spin state does not give the individual fermions $\Psi_{1 / 2}$ any new internal property (only a frameshift of two orientations) Therefore, we only have these sixteen classes of different identical fermions.
When the spin stats is considered, we have 32 possible states. When their mutual external interactions are considered, we get myriads of states.

6.6.4. The Idea of One Interaction Direction

In both the above treated cases we essentially only have one direction of interaction at the time: The cases of external spin direction $\pm \frac{1}{2} \boldsymbol{i}_{3} \leftarrow \pm \frac{1}{2} \hbar \boldsymbol{i e}_{3}$, and the other autonomous regular tetraon idea where the projection direction is the communication direction to the external surroundings The analyse above is that the projection direction is completely free from situation to situation.
6.6.4.1. The One Whole Quantity Charged Fermion

Choosing the carried charge quantity to one whole $q= \pm 1$. We take the electron case $q=-1$. We look at the idea of the internal autonomy regular tetraon frame $\left\{\mathbf{u}_{0}, \mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ fulfilling (6.460). We take similar to $\S 6$ 6.5.10.5 $\overrightarrow{\mathrm{AB}}$ the external e_{3} lab interaction in the direction $\mathrm{u}_{3} \leftarrow \hbar \mathrm{e}_{3}$ and write by (6.513) the internal charge quantity cargo as
$q=\mathrm{u}_{3} \sum_{\mu=0}^{3} P_{\mathrm{u}_{3}}\left(\pm \frac{1}{2} \mathbf{u}_{\mu}\right)=-\frac{1}{2} \mathrm{u}_{3} \mathrm{u}_{3}^{-1}+\mathrm{u}_{3} P_{\mathrm{u}_{3}}\left(+\frac{1}{2} \mathrm{u}_{0},+\frac{1}{2} \mathbf{u}_{1},+\frac{1}{2} \mathbf{u}_{2}\right)=-\frac{1}{2}+\left(-\frac{1}{6}-\frac{1}{6}-\frac{1}{6}\right)=-1$. We see that we have the half spin down component $-\frac{1}{2}$ or just external $\left(-\frac{1}{2} \mathbf{u}_{3} \leftarrow-\frac{1}{2} \hbar \mathbf{e}_{3}\right)$ plus an internal three tetrahedron faced oscillation ${ }^{395}$ as a backup for that $\operatorname{spin}^{1} / 2$ inside one electron fermion. The external half spin up situation is achieved by assuming the opposite orientation $u_{3} \leftarrow-\hbar \mathbf{e}_{3}$, using the same internal sinistral volume chirality, resulting in the same charged quantity $q=-1$. Removing the direction compensating factor in (6.516) gets one whole for the angular momentum
$-\frac{1}{2} \mathbf{u}_{3}+\left(-\frac{1}{6}-\frac{1}{6}-\frac{1}{6}\right) \mathrm{u}_{3}=\left(-\frac{1}{2} \mathrm{u}_{3}\right)+\left(-\frac{1}{2} \mathrm{u}_{3}\right)=-1 \mathrm{u}_{3} \leftarrow \mp \hbar \mathbf{e}_{3}, \quad$ (presuming $\sigma_{3} \|-\mathrm{u}_{3}$),
394 These three • dot objectives are the three judgements for quality in Kant's category table: reality, negation, and limitation ${ }^{395}$ Once again for my conviction, I associate an intuition with the three \wedge phases \triangle of an alternating current power supply. ${ }^{378}$
(C) Jens Erfurt Andresen, M.Sc. Physics, Denmark

312 Research on the a priori of Physics December 2022

For quotation reference use: ISBN-13: 978-8797246931
as a 1-vector $\vec{L}_{3}^{ \pm}= \pm \sigma_{3} \leftarrow \pm \hbar \mathrm{e}_{3}$, that is exactly the angular momentum of the interaction subtons ${ }^{396}$ with the surroundings. The information of the subton lay in its dual transversal plane (6.518) $\mathrm{L}_{3}^{ \pm}=\boldsymbol{i} \vec{L}_{3}^{ \pm}= \pm \boldsymbol{i} \sigma_{3}= \pm \boldsymbol{i}_{3} \leftarrow \pm \hbar i \mathrm{e}_{3}$,
which wavefunction we express by its autonomous angular development parameter $\phi_{s}=\omega_{s} t$, as
$\hat{\psi}_{3 \pm}=|1, \pm 1\rangle_{3}=e^{ \pm i_{3} \phi_{s}}$,
This autonomy chronometric angular development possesses one quantum of angular momentum $1 \hbar=1$, both for the one fermion entity $\Psi_{1 / 2}$ and all the external interacting radio subtons $\Psi_{ \pm \omega_{\mathrm{s}}}$
The huge difference between these two is their energy frequencies $\left|\omega_{1 / 4}\right| \sim 1 / 2 m c^{2} / \hbar \ggg\left|\omega_{s}\right|$.
Taking the internal electron four oscillation components (6.486) playing in music quartet (6.487) $\psi_{\mu \pm}^{1 / 2} \sim \varrho_{\mu} e^{ \pm 1 / 2 i \mathbf{u}_{\mu} \varphi_{\mu}}=\varrho_{\mu}\left(\cos 1 / 2 \varphi_{\mu} \pm i \mathbf{u}_{\mu} \sin 1 / 2 \varphi_{\mu}\right)$,
choosing the interaction direction to the surroundings u_{3} we have spin $1 / 2$ playing an instrument

$$
\psi_{3-}^{1 / 2} \sim \varrho_{3} e^{-1 / 2 i u_{3} \varphi_{3}}=\varrho_{3}\left(\cos 1 / 2 \varphi_{3}-i u_{3} \sin 1 / 2 \varphi_{3}\right)
$$

(sinistral, outwards retograde).
For the remaining three playing instruments oscillating along the remaining tetrahedron faces of the regular tetraon symmetry
(6.522) $\quad \psi_{\mu+}^{1 / 2} \sim \varrho_{\mu} e^{+1 / 2 i u_{\mu} \varphi_{\mu}}=\varrho_{\mu}\left(\cos 1 / 2 \varphi_{\mu}+i u_{\mu} \sin 1 / 2 \varphi_{\mu}\right)$, for $\mu=0,1,2$. (outwards progressive) These three instruments can sporadically play in a unison harmony adding up in
$\psi_{\Delta+}^{1 / 2} \sim \varrho_{\Delta} e^{-1 / 2 i u_{3} \varphi_{\Delta}}=\varrho_{\Delta}\left(\cos 1 / 2 \varphi_{\Delta}-i u_{3} \sin 1 / 2 \varphi_{\Delta}\right), \quad$ (inwards $-u_{3}$ progressive)
The three dialectic complementary angular momenta to (6.522) each contributes with $-\frac{1}{6} \mathrm{u}_{3}$ adding up to the backup part $\left(-\frac{1}{2} u_{3} \leftarrow-\frac{1}{2} \hbar \mathbf{e}_{3}\right)$ to the spin $1 / 2 \operatorname{part}\left(-\frac{1}{2} \mathbf{u}_{3} \leftarrow-\frac{1}{2} \hbar \mathbf{e}_{3}\right)$.
Now we doubt in the ambiguity of which of those possess the spin $1 / 2$ property or do they both.
To avoid all religious beliefs, we will abstain to use the idea of a static (eternal) electric field of momentane infinity from the electron charge. By this, the impact of one local electron fermion has lost its classical electric field as its first cause (first approximation)! What then? For the idea of one free electron entity $\Psi_{1 / 2}$ in physical space it will (what we now know) interact with the angular momentum of the background radiation and turn its $\operatorname{spin} 1 / 2$ in that direction. We have guessed to know (and also confirmed by measurement) that the background radiation has almost isotropic distributed angular momentum directions so that the $\operatorname{spin}^{1} / 2$ direction of the electron is turned in all directions with a frequency distribution similar to the fluctuating background radiation if the electron is free in all other aspects.

6.6.4.2 The Field of Information About one Charge

Our experience tells us that the electron has an electric charge. We have defined it as negative. The analyse above shows the electron then has an outwards sinistral chirality direction of its spin ${ }^{1 / 2}$ This charge quantity of the electron has no specific direction, so it must be categorised as a scalar.
Above we have created the synthetic judgment, that the electron entity $\Psi_{1 / 2}$ has autonomy.
From this we have the analytic judgment, that charged quantity $q=-1$ is an internal quality of electrons. How is the information about the action of this charge transmitted to the surroundings?
The only issue we have made for this is the fundamental idea of plane angular momentum. The angular area chronometric development is dependent on a chronometer-clock. We cannot use the internal oscillator clocks of the electron that is as an a priory transcendental quality external hidden for all other entities (including us) in the surroundings (except as an abstract quantity concept we call rest mass). What is not hidden, is the angular momentum.
In principle, we are free to choose any lab clock we want as the chronometer. (as in § I. 1.1,p.32).
${ }^{396}$ The idea of subtons is introduced in § I. 3.4.1.5 etc. and reviewed in 6.4.9.1, 6.5.3, and 6.5.6.2.
© Jens Erfurt Andresen, M.Sc. NBI-UCPH, $-313-\quad$ Volume I, - Edition 2-2020-22, - Revision 6,

For quotation reference use: ISBN-13: 978-8797246931

