
6.6.1.3. Three Linear Independent Internal Components of Angular Momenta of Fermion Structure Since Immanuel Kant 1747, "Von der Kraft der Körper überhaupt" 390 argued for three dimensions from Kepler's chronometric area law and Newtons' squared distance law, we have fundamentally assumed $\mathcal{3}$-space of physics as canonical three-dimensional.
The principle of angular momentum as chronometric areas we concept make as bivectors and constitute in duality with 1 -vectors. For a unit, we write the symbols $i=i u$ and express the threedimensional linear independent directions by the dual orthogonal basis $\left\{\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right\}=\boldsymbol{i}\left\{\boldsymbol{\sigma}_{1}, \sigma_{2}, \sigma_{3}\right\}$. To keep it reasonable we demand such a basis to be autonomous for just one indivisible fermion. Above in Chapter 6.5, we have argued that spin $1 / 2$ stats of fermion entity $\Psi_{1 / 2}$ can consist of three orthogonal circular oscillating 1 -spinors possessing half radian angular momenta $\pm \frac{1}{2} \boldsymbol{i}_{k}$ components, that in their indivisible composition of each orientation perform distinguishable properties as described in $\S 6.5 .8 .7$ by combinations (6.444): 1. Chirality, 2. Spin orientation: 1. The serious impact differentiation is chirality volume with orientations dextral and sinistral. 2. The spin $u p$ or down orientation is an easy differentiation. It shifts with no internal effort.

External spin orientation can just be shifted by turning the entity $\Psi_{1 / 2}$ opposite by rotating $\pi$ around one external axis perpendicular to the external spin axis, which can be detected (measured).
This turn may of course have an impact on the relation to the surroundings and be observable.
3. We find that parity inversion of all 1-vectors is just in duality with versor reversion, this gives
$\Psi_{\mathbb{H}} \widetilde{\Psi_{H}}=\widetilde{\Psi_{H}} \Psi_{H}=\Psi_{\mathbb{H}} \Psi_{\mathbb{H}}^{\dagger}=\Psi_{\mathbb{H}}^{\dagger} \Psi_{\mathbb{H}}=\left|\Psi_{H}\right|^{2}=1$.
This reversion operation gives no new observable different state of any fermion entity $\Psi_{1 / 2}$. In the tradition, we say that a spin $1 / 2$ fermion entity state $\Psi_{1 / 2} \rightarrow|\lambda, m\rangle \rightarrow\left|\frac{3}{4}{ }_{4} \pm \frac{1}{2}\right\rangle$ has the quantum state direction number $j=\frac{1}{2}$ with orientation number $m= \pm \frac{1}{2}$ and the total quantum number $\lambda=\frac{3}{4}=j(j+1)$ for the total squared angular momentum $J^{2}=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=\frac{3}{4}$. (Casimir). The symmetric autonomy model of three orthogonal oscillating 1 -spinors possessing half radian angular momenta $\pm \frac{1}{2}\left|\boldsymbol{i}_{k}\right|$ has square sum $\left(\frac{1}{2}\right)_{1}^{2}+\left(\frac{1}{2}\right)_{2}^{2}+\left(\frac{1}{2}\right)_{3}^{2}=\frac{3}{4}$ with a lack $\frac{1}{4}=\left(\frac{1}{2}\right)_{0}^{2} \sim \lambda_{0}^{2}$ in one whole for a versor form of four-angular-momenta (6.456)
(6.511) $\quad \Psi_{\mathbb{H}}=\lambda_{0}+\lambda_{1} \boldsymbol{i}_{1}+\lambda_{2} \boldsymbol{i}_{2}+\lambda_{3} \boldsymbol{i}_{3} \in \mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$, where $\Psi_{\mathbb{H}}^{\dagger} \Psi_{\mathbb{H}}=\lambda_{0}^{2}+\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=1$

The dialectic complement development oscillation plays their trio music in harmony, as (6.447)
(6.512) $\quad \psi_{k \pm}^{1 / 2}=\varrho_{k} e^{ \pm \boldsymbol{i}_{k} 1 / 2 \phi_{k}}=\varrho_{k}\left(\cos 1 / 2 \phi_{k} \pm \boldsymbol{i}_{k} \sin 1 / 2 \phi_{k}\right), \quad$ (6.408)-(6.414) and (6.431)-(6.432) This 'playing music trio ${ }^{391}$ of three orthogonal oscillators each with amplitudes $\lambda_{k}$ combined in a scalar oscillation with amplitude $\lambda_{0}$ and what we in all will call a four impact $\sum \lambda_{\mu}^{2}=\lambda_{\mu} \lambda_{\mu}=1$ from the internal frequency energies, autonomous possibly chronometric $\left|\omega_{1 / 4}\right|=1$ each. There are four dimensions, three angular momentum bivectors directions and one common scalar for the four oscillators. Even though the direction qualities are quantitative linear independent, their oscillation spinors are interconnected and perform one unified indivisible versor 2-rotor wavefunction of the type (6.451) $\psi_{+1 / 2}=U=+u_{0}+u_{1} \boldsymbol{i}_{1}+u_{2} \boldsymbol{i}_{2}+u_{3} \boldsymbol{i}_{3}, u_{\mu} u_{\mu}=1$, and $U U^{\dagger}=1$.
6.6.2. Fermions have by Tetraon Symmetry from the Platonic Tetrahedron Idea

Although the possible circle oscillations by 1-spinors internal in any fermion entity $\Psi_{1 / 2}$ are interconnected. It is possible to accept multiple of them as long as they sum synchronise to a versor 2-rotor structure of the even geometric algebra $\mathcal{G}_{0,2}(\mathbb{R})$. Or alternatively the isomorphic resulting in unit spinor representation of the Special Unitary group $S U(2)$ by complex $2 \times 2$ matrices.
We have seen, that four autonomy directions 1 -vectors $\mathbf{u}_{\mu}$ orientated outwards in a local regular tetraon basis structure symmetric in 3-space balance itself to null. But the four direction different
${ }^{390}$ See the German text in footnote 178, or https://korpora.zim.uni-duisburg-essen.de/kant/aa01/023.html
${ }^{391}$ The word 'music' is used instead of a picture we cannot see. Its external estimated 'pitch' frequency may be $\omega_{1 / 4} \sim 1 / 2 m c^{2} / \hbar$.
(C) Jens Erfurt Andresen, M.Sc. Physics, Denmark $\quad$ Research on the a priori of Physics
possible oscillating circular 1-spinors (6.486) possess each two different orientations of their angular momentum bivectors $S_{\mu}= \pm \frac{1}{2} i \mathbf{u}_{\mu}$ parallel to the faces of the belonging regular tetrahedron with unit circumscribed sphere describing the $S^{3}$ symmetry $u_{v} u_{v}=1$ of the versor idea $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$ in $\S$ 6.6.1.2. We recall the four dual outwards directions from a local entity $\Psi_{1 / 2}$ center with the two orientations $\pm \frac{1}{2} \mathbf{u}_{\mu}$ that we combine as (6.473) and achieved the scalar quantities (6.474)

$$
\begin{equation*}
\text { (6.513) } \quad q=\mathrm{u}_{\kappa} \sum_{\mu=0}^{3} P_{\mathrm{u}_{\kappa}}\left( \pm \frac{1}{2} \mathbf{u}_{\mu}\right)=1, \frac{2}{3}, \frac{1}{3}, 0,-0,-\frac{1}{3},-\frac{2}{3},-1 \tag{}
\end{equation*}
$$

The condition for this is $\mathbf{u}_{\mu}^{2}=1$ and the regular tetraon demand $\mathbf{u}_{\mu} \cdot \mathbf{u}_{v}=\frac{1}{3}$, for $\mu \neq v ; \kappa, \mu, v=0,1,2,3$. We use the idea of full spherical symmetry to remove any preferred projection direction $u_{\kappa}$ to the surroundings by multiplication with this direction unit $\mathbf{u}_{\kappa}$ of the regular tetraon basis, which is a free autonomy for any fermion entity $\Psi_{1 / 2}$.
These $2^{3}=8$ real scalar quantities characterise differences in the category of identical entities $\Psi_{1 / 2}$ This is possible a charge quantity cargo endowment quality for each fermion entity $\Psi_{1 / 2}$.
We see in (6.473) that the fractional $q$ 's have three generic cases each may give a qualitative difference between entities when they interacts with their siblings. This is possibly what is called chromatic qualities in the Standard Model. In all, we have sixteen $2^{4}$ different quality types of fermions in the category of identical fermions entities $\Psi_{1 / 2}$ in 3-space of physics, which possess the full geometric algebra $\mathcal{G}_{3}(\mathbb{R})=\mathcal{G}_{3}^{-}(\mathbb{R})+\mathcal{G}_{0,2}(\mathbb{R})$. This Geometric Algebras is the foundation of the ideology of entities $\Psi_{1 / 2}$ that are fermions with the primary quality of spin one-half $\left(\operatorname{spin}^{1 / 2}\right)$. The chirality quality differentiation in the identity category is included in the sixteen $2^{4}=16$ different types of fermions $\Psi_{1 / 2}$ in (6.473), in that three independent directions are sufficient to determine chirality. It is up to the reader to do this in the specific lab measurement situation. The external spin property is not an internal differentiation identifier for any fermion $\Psi_{1 / 2}$ The one-half $\operatorname{spin}^{1} / 2$ quality appears when the fermion interacts with the surroundings in a state, what it de facto always do (else we or its interacting siblings do not know it exists). We have argued that an internal shift of two of three orthogonal oscillating orientations does the spin shift. For the regular tetraon music quartet we need a shift for two out of four oscillating orientations, to make the internal spin $1 / 2$ change that has an external impact (is observable):

- For both charges $q= \pm 1$ the $\operatorname{spin}^{1} 1 / 2$ shift is straight internal effortless.
- For fractional charged the spin $1 / 2$ shift is joined by a 'colour' change.

But for charge $q= \pm 0$ this internal spin $1 / 2$ shift is double, a total shift of all four oscillating orientations. Maybe we can associate this with neutrino oscillations?
6.6.3. The Categorical Quality of Spin $1 / 2$ Fermions in 3 -space

From the Stern-Gerlach 1922 experiment and many other, we have measured different location impacts of the fermion quality for the individual existence of entities $\Psi_{1 / 2}$.

- The reality is that we actually have detected such entity $\Psi_{1 / 2}$ as spin $1 / 2$ fermions For each entity, we by autonomy have to define a locality in an idea of a 3 -space. Presuming this established by the intersection point of at least three planes ${ }^{393}$ of circle oscillator components it might be orthogonalized with the angular momenta $\pm \frac{1}{2} \boldsymbol{i}_{1}, \pm \frac{1}{2} \boldsymbol{i}_{2}, \pm \frac{1}{2} \boldsymbol{i}_{3}$, which by the dextral chiral pseudoscalar $\boldsymbol{i}$ have six outwards orientated directions $+\sigma_{1},+\sigma_{2},+\sigma_{3},-\sigma_{1},-\sigma_{2},-\sigma_{3}$ Each of these should in an external view indicate six interconnected oscillators, but the parity inversion of each will either cancel out or be one and the same orientated angular momentum. The out cancelling of one of the orthogonal components would disagree with (6.289) and make the idea of such a fermion disappear from the quality category of one entity $\Psi_{1 / 2}$ in 3-space.

[^0]For quotation reference use: ISBN-13: 978-8797246931


[^0]:    ${ }^{393}$ This simple formulation by any symmetric direction projection was firs formlated by the author of this book august $2^{\text {nd }} 2019$ ${ }^{393}$ We will sometimes call these Kepler planes in association with a classical oscillation of a satellite around its planet.
    © Jens Erfurt Andresen, M.Sc. NBI-UCPH, $-311-\quad$ Volume I, - Edition 2-2020-22, - Revision 6 ,

