Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

The four principal regular tetraon directions behave in the same way $P_{\mathbf{u}_{\mu}} \Psi_{\text {aut }, \uparrow}^{p q g-1}=q_{\mu} \mathbf{u}_{\mu}$
To prevent unnecessary association with an external active spin $1 / 2$ direction $u_{3} \leftarrow \sigma_{3}$ we instead choose to project on the real scalar dimension 'direction' ${ }^{375} \mathbf{u}_{0} \rightarrow \mathbf{1} \Rightarrow s_{0} u_{0}=1 / 2 \sim\left|\lambda_{\text {auto,0 }}\right|$, then in this direction $\left(P_{u_{0}} s_{0}\right) u_{0}=\frac{1}{2}$, because $u_{0}^{-1} u_{0}=1$, and the other directions have the impact

Projection direction u_{3}	
$\left(\pm \mathrm{s}_{0} \pm \mathrm{s}_{1} \pm \mathrm{s}_{2} \pm \mathrm{s}_{3}\right) \quad \mathrm{s}_{3}=\frac{1}{2} \mathrm{u}_{3}$	
$\Psi_{\text {auto, }}^{\text {pqg }}$ - \downarrow	$P_{\mathrm{u}_{3}} \Psi_{\text {auto, } \uparrow}^{p q g-1}$
$\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\} \rightarrow$	$q_{3} \mathrm{u}_{3}^{-1}$
$(+,+,+,+) \rightarrow$	$0 u_{3}^{-1}$
$(-,+,+,+)$	
$(+,-,+,+)$	$\frac{1}{3} u_{3}^{-1}$
$(+,+,-,+)$	
$(-,-,+,+)$	
$(-,+,-,+)$	$\frac{2}{3} u_{3}^{-1}$
$(+,-,-,+)$	
$(-,-,-,+) \rightarrow$	$1 u_{3}^{-1}$
$(+,+,+,-) \rightarrow$	$-1 u_{3}^{-1}$
$(+,+,-,-)$	
$(+,-,+,-)$	$-\frac{2}{3} \mathrm{u}_{3}^{-1}$
$(-,+,+,-)$	
$(-,-,+,-)$	
$(-,+,-,-)$	$-\frac{1}{3} u_{3}^{-1}$
$(+,-,-,-)$	
$(-,-,-,-) \rightarrow$	$-0 u_{3}^{-1}$

$$
\text { (6.475) } \quad P_{\mathrm{u}} \Psi_{\text {auto }, \mathrm{A}}^{\text {pqg } 2}=P_{\mathrm{u}}\left(\mathrm{~S}_{0}+\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}\right)=P_{\mathrm{u}} \boldsymbol{i}\left(\mathrm{~s}_{0}+\mathrm{s}_{1}+\mathrm{s}_{2}+\mathrm{s}_{3}\right)=\boldsymbol{i} P_{\mathrm{u}}\left(\pm \mathrm{s}_{0} \pm \mathrm{s}_{1} \pm \mathrm{s}_{2} \pm \mathrm{s}_{3}\right)=q \boldsymbol{i} \boldsymbol{u}=q \boldsymbol{i}
$$

$\left(P_{\mathrm{u}_{0}} \mathrm{~s}_{1}\right) \mathrm{u}_{0}=\left(P_{\mathrm{u}_{0}} \mathrm{~s}_{2}\right) \mathrm{u}_{0}=\left(P_{\mathrm{u}_{0}} \mathrm{~s}_{3}\right) \mathrm{u}_{0}=\frac{1}{6}, \quad$ as an alternative to (6.469).
In this chosen 1-vector direction u_{0} as well as the other four we have the projection impact
$P_{\mathbf{u}_{0}} \Psi_{\text {auto, }, ~}^{\text {pqg-1 }}=q_{0} \mathrm{u}_{0}$, and the scalar result $\left(P_{\mathbf{u}_{0}} \Psi_{\text {auto, }}^{\text {pqg }}\right) \mathrm{u}_{0}=q_{0}$ for any arbitrary external direction giving the sixteen combinations resulting in eight different cases of quantitative values:

It is up to the reader to interpret the full consequence of this combination table for entity $\Psi_{1 / 2}$ and compare it with the spin $1 / 2$ fermions classified in the first generation of the Standard Model. What we have found is, that a fundamental indivisible spin $1 / 2$ entity $\Psi_{1 / 2}$ in physical 3 -space by its own free S^{3} symmetry caries a quantitative cargo (charge) expressed as scalars of the ratio
$q=1, \frac{2}{3}, \frac{1}{3}, 0,-\frac{1}{3},-\frac{2}{3},-1$.
In the right table in (6.473) we show the projection direction u_{3} and use $P_{\mathrm{u}_{3}} \Psi_{\text {auto, } \AA}^{\text {pqg-1 }}=q_{3} \mathrm{u}_{3}$
The foundation of this full free internal symmetry is a projection into just one arbitrary direction expressed by the internal unit 1 -vector u, where $u^{-1} u=1$, chosen normed $u^{2}=1$.

Just as the complex numbers of the real scalar part and the imaginary part represent different directions in space. This is bette expressed as the plane rotor $U_{\theta}=u_{\theta} u_{0}=\cos \theta+i \sin \theta$, a scalar and a bivector. This we right multiplying by u_{0} and achieve $\mathrm{u}_{\theta}=(\cos \theta) \mathrm{u}_{0}+(\sin \theta) \mathrm{u}_{\perp 0}$, with the real scalar part $\cos \theta$ representing the wanted 1 -vector direction u_{0}, in plane $i=\mathrm{u}_{\perp 0} \wedge \mathrm{u}_{0}$.
© Jens Erfurt Andresen, M.Sc. Physics, Denmark $\quad-302-\quad$ Research on the a priori of Physics $-\quad$ December 2022

$$
\text { To make a scalar quantity impact of this bivector, we right multiply by the bivector }-i=-i u
$$

(6.476) $\quad\left(P_{\mathrm{u}} \Psi_{\text {auto, }}^{\mathrm{pqg}-2}\right)(-\boldsymbol{i})=\left(P_{\mathrm{u}}\left(\mathrm{S}_{0}+\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}\right)\right)(-\boldsymbol{i u})=\left(\boldsymbol{i} P_{\mathrm{u}}\left(\pm \mathrm{s}_{0} \pm \mathrm{s}_{1} \pm \mathrm{s}_{2} \pm \mathrm{s}_{3}\right)\right)(-\boldsymbol{i}) \mathrm{u}=\boldsymbol{q}$.

Now the reader should ask, why is such direction projection for one entity $\Psi_{1 / 2}$ of interest?
The answer is rather simple. We need a signal of information from this entity location called $\mathrm{A} \leftarrow \Psi_{1 / 2, \mathrm{~A}}$ to another external B location (to and from vice versa). The idea is that the information is carried by spin one subtons that possesses ${ }^{377}$ one hole quantum of angular momentum ± 1 in a specific direction outwards $\overrightarrow{\mathrm{AB}}$ from $\Psi_{1 / 2, \mathrm{~A}}$ (alternative inwards $\overrightarrow{\mathrm{BA}}$ to location A).
This is the specific defining one 1 -vector direction for the achievable transmitted information in the transversal angular plane of any quantity of this quality of the entity $\Psi_{1 / 2, \mathrm{~A}}$.
The projection direction of interest internal in $\Psi_{1 / 2, \mathrm{~A}}$ is then $\mathrm{u} \| \overrightarrow{\mathrm{AB}}$, positively orientated outwards We will look into the different values of this covariant direction projection quantity of the idealised tetraon symmetry of one entity $\Psi_{1 / 2}$ in just one direction.
6.5.10.5. The Regular Tetraon Symmetry Quantity Cargo of One Indivisible Spin $1 / 2$ entity quality We will look further at the simplest case of (6.473) $|q|=1$ where there is a full count quantity for just one entity $\Psi_{1 / 2, A}$. Because we have defined the electron charge negative, we start with $q=-1$ and set the internal projection direction parallel to the external information direction $\mathrm{u}_{0}=\mathrm{u} \| \mid \overrightarrow{\mathrm{AB}}$. We recall the four spin $1 / 2$ oscillating angular momentum pqg-1 directions $\left\{\mathrm{s}_{0}=\frac{1}{2} \mathrm{u}_{0}, \mathrm{~s}_{1}=\frac{1}{2} \mathrm{u}_{1}, \mathrm{~s}_{2}=\frac{1}{2} \mathrm{u}_{2}, \mathrm{~s}_{3}=\frac{1}{2} \mathrm{u}_{3}\right\}$ for $(6.466) \rightarrow \Psi_{\text {auto, }}^{\text {pqg. }}=\left(\pm \mathrm{s}_{0} \pm \mathrm{s}_{1} \pm \mathrm{s}_{2} \pm \mathrm{s}_{3}\right)$.
We special choose the covariant projection direction as $\mathrm{s}_{0}=\frac{1}{2} \mathrm{u}_{0}$ possessing transversal angular momentum oscillation with a retrograde negative orientation (outwards sinistral)

$$
S_{0}^{\dagger}=-\frac{1}{2} i u_{0}
$$

The other three directions u_{1}, u_{2}, u_{3} possess synchronous angular momenta oscillations with progressive positive orientations (outwards dextral)

$$
S_{1}=\frac{1}{2} \boldsymbol{i} \mathbf{u}_{1}, \quad S_{2}=\frac{1}{2} \boldsymbol{i} \mathbf{u}_{2}, \quad S_{3}=\frac{1}{2} \boldsymbol{i} u_{3} .
$$

Due to the spatial directions of the regular tetraon structure (6.460) these three plane cyclic angular oscillations add together and give just one angular momentum component ${ }^{378}$
$\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}=-\boldsymbol{i} \mathrm{S}_{0}=-\frac{1}{2} \boldsymbol{i} \mathbf{u}_{0}$
The symmetry tells us that this is just the same as the sum of their projections on the direction u_{0} Adding these two contributions (6.477) and (6.479) together we have in total the added orientations (\pm) of angular momentum (6.467)
$\Psi_{\text {auto, },}^{p q g}=\boldsymbol{i} \Psi_{\text {auto, }, ~}^{\text {pqg }}=\boldsymbol{i}\left(-\mathrm{S}_{0}+\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}\right)=\left(\mathrm{S}_{0}^{\dagger}+\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}\right)=-\boldsymbol{i} \mathbf{u}_{0}$
To achieve the quantity of this we multiply with the direction of the information interaction -iu for the measurement, i.e., dual $q=\left(-\mathrm{s}_{0}+\mathrm{s}_{1}+\mathrm{s}_{2}+\mathrm{s}_{3}\right) \mathrm{u}_{0}=-1$, for a quantitative cargo.
${ }^{36}$ Given that $i^{-1} i=1=-i i \Rightarrow i^{-1}=-i$. We recall that i does not commute with 1 -vectors $86.2 .5 .3 i \cdot \mathrm{x}=-\mathrm{x} \cdot i$ or that $\mathrm{u} \cdot \mathbf{X}=-\mathbf{X} \cdot \mathrm{u}$ in the projection operation $P_{\mathrm{u}} \mathbf{X}=\mathrm{u}^{-1}(\mathrm{u} \cdot \mathbf{X})=-\mathrm{u}^{-1}(\mathbf{X} \cdot \mathrm{u})$. Therefore, we will avoid the ambiguity in the intuitive interpretation of the definition by sticking to the 1 -vector definition (6.469) and using the commuting pseudoscalar $\boldsymbol{i}, \boldsymbol{i}^{2}=-1$ to make the dual transformation $\mathrm{x}=-\boldsymbol{i} \mathrm{X}=-\mathrm{X} \boldsymbol{i} \Leftrightarrow \mathrm{X}=\boldsymbol{i x}=\mathrm{x} \boldsymbol{i}$.
378 For intuition, the reader can make an abstract association with three-phase electrical power. The alternating current synchronous oscillation in the three cores possesses each angular momentum from the progressive rotation of the generator.
At the electrical motor, this three-phase angular momentum is added together to one resulting in angular momentum for the motor © Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-303-\quad$ Volume I, - Edition 2-2020-22, - Revision 6 ,
For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

