II. The Geometry of Physics -6. The Natural Space of Physics -6.5. The Angular Momentum in 3 Space -

The four principal regular tetraon *directions* behave in the same way $P_{\mathbf{u}_{\mu}} \Psi_{\text{auto}\Lambda}^{pqg-1} = q_{\mu} \mathbf{u}_{\mu}$. To prevent unnecessary association with an external active spin¹/₂ *direction* $\mathbf{u}_3 \leftarrow \boldsymbol{\sigma}_3$ we instead choose to project on the real scalar dimension '*direction*'³⁷⁵ $\mathbf{u}_0 \rightarrow \mathbf{1} \Rightarrow \mathbf{s}_0 \mathbf{u}_0 = \frac{1}{2} \sim |\lambda_{auto 0}|$, then in this *direction* $(P_{u_0}s_0)u_0 = \frac{1}{2}$, because $u_0^{-1}u_0 = 1$, and the other *directions* have the impact $(P_{\mathbf{u}_0}\mathbf{s}_1)\mathbf{u}_0 = (P_{\mathbf{u}_0}\mathbf{s}_2)\mathbf{u}_0 = (P_{\mathbf{u}_0}\mathbf{s}_3)\mathbf{u}_0 = \frac{1}{6},$ (6.471) as an alternative to (6.469).

In this chosen 1-vector *direction* \mathbf{u}_0 as well as the other four we have the projection impact

 $P_{u_0}\Psi_{auto\Lambda}^{pqg-1} = q_0 u_0$, and the scalar result $(P_{u_0}\Psi_{auto\Lambda}^{pqg-1})u_0 = q_0$ for any arbitrary external *direction* (6.472)giving the sixteen combinations resulting in eight different cases of *quantitative* values:

	Projection direct	ion	u ₀		Projection <i>direction</i> u ₃		
	$(\pm \mathbf{s}_0 \pm \mathbf{s}_1 \pm \mathbf{s}_2 \pm \mathbf{s}_3)$)→	$\mathbf{s}_0 = \frac{1}{2} \mathbf{u}_0,$	$\mathbf{s}_0 \mathbf{u}_0 = \frac{1}{2}$,	?	$(\pm \mathbf{s}_0 \pm \mathbf{s}_1 \pm \mathbf{s}_2 \pm \mathbf{s}_3)$) $\mathbf{s}_3 = \frac{1}{2}\mathbf{u}_3$
	$\Psi^{\mathbf{pqg-1}}_{_{\mathrm{auto},\Lambda}}\downarrow$		$P_{\mathbf{u}_0} \Psi_{\mathrm{auto}, \Lambda}^{\mathbf{pqg-1}}$,	$(P_{\mathbf{u}_0} \Psi^{\mathbf{pqg-1}}_{_{\mathrm{auto},\Lambda}})\mathbf{u}_0$	\downarrow	$\Psi_{\rm auto,\Lambda}^{pqg-1}\downarrow$	$P_{\mathbf{u}_3} \Psi_{\mathrm{auto}, \Lambda}^{pqg-1}$
6.473)	$\{\mathbf{s}_0, \mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3\}$	\rightarrow	$q_0 \mathbf{u}_0^{-1}$,	q_0		$\{\mathbf{s}_0, \mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3\}$ →	$q_3 \mathbf{u}_3^{-1}$
	$(+,+,+,+) \rightarrow$	\rightarrow	+0	0,	n	$(+,+,+,+) \rightarrow$	$0u_{3}^{-1}$
	$(+, -, +, +) \\ (+, +, -, +) \\ (+, +, +, -) $	\rightarrow	$+\frac{1}{3}u_0^{-1}$	$\frac{1}{3}$,	d	$\left. \begin{array}{c} (-,+,+,+) \\ (+,-,+,+) \\ (+,+,-,+) \end{array} \right\}$	$\frac{1}{3}u_{3}^{-1}$
	$(+, -, -, +) \\ (+, -, +, -) \\ (+, +, -, -) $	\rightarrow	$+\frac{2}{3}u_0^{-1}$	$\frac{2}{3}$,	u	$\left. \begin{array}{c} (-,-,+,+) \\ (-,+,-,+) \\ (+,-,-,+) \end{array} \right\}$	$\frac{2}{3}u_{3}^{-1}$
	$(+,-,-,-) \rightarrow$	\rightarrow	$+u_{0}^{-1}$	1,	р	$(-,-,-,+) \rightarrow$	$1u_{3}^{-1}$
	$(-,+,+,+) \rightarrow$	\rightarrow	$-u_0^{-1}$	—1,	е	$(+,+,+,-) \rightarrow$	$-1u_{3}^{-1}$
	(-, +, +, -) $(-, +, -, +)$ $(-, -, +, +)$	\rightarrow	$-\frac{2}{3}u_0^{-1}$	$-\frac{2}{3}$,	ū	$\left. \begin{array}{c} (+,+,-,-) \\ (+,-,+,-) \\ (-,+,+,-) \end{array} \right\}$	$-\frac{2}{3}\mathbf{u_3}^{-1}$
	$(-, -, -, +) \\ (-, -, +, -) \\ (-, +, -, -)$	\rightarrow	$-\frac{1}{3}u_0^{-1}$	$-\frac{1}{3}$,	d	$\left. \begin{array}{c} (-,-,+,-) \\ (-,+,-,-) \\ (+,-,-,-) \end{array} \right\}$	$-\frac{1}{3}u_3^{-1}$
	(−, −, −, −) →	\rightarrow	-0	0,	n	(−, −, −, −) →	$-0u_{3}^{-1}$

It is up to the reader to interpret the full consequence of this combination table for *entity* $\Psi_{1,4}$ and compare it with the spin¹/₂ fermions classified in the first generation of the Standard Model. What we have found is, that a fundamental indivisible spin¹/₂ entity $\Psi_{1/2}$ in physical 3-space by its own free S^3 symmetry caries a *quantitative cargo* (charge) expressed as scalars of the ratio $q = 1, \frac{2}{3}, \frac{1}{3}, 0, -\frac{1}{3}, -\frac{2}{3}, -1.$ (6.474)

In the right table in (6.473) we show the projection *direction* \mathbf{u}_3 and use $P_{\mathbf{u}_3} \Psi_{\text{auto}A}^{pqg-1} = q_3 \mathbf{u}_3$. The foundation of this full free internal symmetry is a projection into just one arbitrary *direction* expressed by the internal unit 1-vector **u**, where $\mathbf{u}^{-1}\mathbf{u} = 1$, chosen normed $\mathbf{u}^2 = 1$.

⁵ Just as the complex numbers of the real scalar part and the imaginary part represent different *directions* in space. This is better expressed as the plane rotor $U_{\theta} = \mathbf{u}_{\theta} \mathbf{u}_0 = \cos \theta + \mathbf{i} \sin \theta$, a scalar and a bivector. This we right multiplying by \mathbf{u}_0 and achieve $\mathbf{u}_{\theta} = (\cos \theta)\mathbf{u}_{0} + (\sin \theta)\mathbf{u}_{10}$, with the real scalar part $\cos \theta$ representing the wanted 1-vector *direction* \mathbf{u}_{0} , in plane $\mathbf{i} = \mathbf{u}_{10} \wedge \mathbf{u}_{0}$.

 ∇ Geometric Critique esearch on th of Pure $\overline{\mathbf{O}}$ 2 Mathematical Reasoning D 10m Of Phys10 S Edition 2 lens Erfurt \bigcirc N 2020-22 An ldr S. G.S. \mathbf{O}

December 2022

 $P_{\mathbf{u}} \Psi_{\text{auto} A}^{\text{pag-2}} = P_{\mathbf{u}} (\mathbf{S}_{0} + \mathbf{S}_{1} + \mathbf{S}_{2} + \mathbf{S}_{3}) = P_{\mathbf{u}} i (\mathbf{s}_{0} + \mathbf{s}_{1} + \mathbf{s}_{2} + \mathbf{s}_{3}) = i P_{\mathbf{u}} (\pm \mathbf{s}_{0} \pm \mathbf{s}_{1} \pm \mathbf{s}_{2} \pm \mathbf{s}_{3}) = q i \mathbf{u} = q i$ (6.475) To make a scalar *quantity* impact of this bivector, we right multiply by the bivector -i = -iu $\left(P_{\mathbf{u}}\Psi_{\mathrm{auto},\mathbf{A}}^{\mathrm{pqg-2}}\right)(-\mathbf{i}) = \left(P_{\mathbf{u}}(\mathbf{S}_{0}+\mathbf{S}_{1}+\mathbf{S}_{2}+\mathbf{S}_{3})\right)(-\mathbf{i}\mathbf{u}) = \left(\mathbf{i}P_{\mathbf{u}}(\pm\mathbf{s}_{0}\pm\mathbf{s}_{1}\pm\mathbf{s}_{2}\pm\mathbf{s}_{3})\right)(-\mathbf{i})\mathbf{u} = q.$ (6.476) Now the reader should ask, why is such *direction* projection for one *entity* $\Psi_{1/2}$ of interest? The answer is rather simple. We need a signal of information from this *entity* location called A $\leftarrow \Psi_{\frac{1}{2}A}$ to another external B location (to and from vice versa). The idea is that the information is carried by spin one subtons that possesses³⁷⁷ one hole *quantum* of angular momentum ± 1 in a specific *direction outwards* \overrightarrow{AB} from $\Psi_{\frac{1}{2},A}$ (alternative inwards \overrightarrow{BA} to location A). This is the specific defining one 1-vector *direction* for the achievable transmitted information in the transversal angular plane of any *quantity* of this *quality* of the *entity* $\Psi_{\frac{1}{2},A}$. The projection *direction* of interest internal in $\Psi_{\frac{1}{2}A}$ is then **u** || \overrightarrow{AB} , positively orientated *outwards*. We will look into the different values of this covariant *direction* projection *quantity* of the idealised tetraon symmetry of one *entity* $\Psi_{1/2}$ in just one *direction*. 6.5.10.5. The Regular Tetraon Symmetry Quantity Cargo of One Indivisible Spin^{1/2} entity quality We will look further at the simplest case of (6.473) |q| = 1 where there is a full count *quantity* for just one *entity* $\Psi_{\frac{1}{2}A}$. Because we have defined the electron charge negative, we start with q = -1 and set the internal projection *direction* parallel to the external information *direction* $\mathbf{u}_0 = \mathbf{u} \parallel \overrightarrow{AB}$. We recall the four spin¹/₂ oscillating angular momentum *pqg*-1 *directions* $\{\mathbf{s}_0 = \frac{1}{2}\mathbf{u}_0, \ \mathbf{s}_1 = \frac{1}{2}\mathbf{u}_1, \ \mathbf{s}_2 = \frac{1}{2}\mathbf{u}_2, \ \mathbf{s}_3 = \frac{1}{2}\mathbf{u}_3\}$ for (6.466) $\rightarrow \Psi_{\text{auto},\Lambda}^{pqg\cdot 1} = (\pm \mathbf{s}_0 \pm \mathbf{s}_1 \pm \mathbf{s}_2 \pm \mathbf{s}_3).$ We special choose the covariant projection *direction* as $s_0 = \frac{1}{2}u_0$ possessing transversal angular momentum oscillation with a retrograde negative orientation (*outwards* sinistral) $\mathbf{S}_0^{\dagger} = -\frac{1}{2} \mathbf{i} \mathbf{u}_0.$ (6.477)The other three *directions* $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ possess synchronous angular momenta oscillations with progressive positive orientations (*outwards* dextral) (6.478) $S_1 = \frac{1}{2}iu_1$, $S_2 = \frac{1}{2}iu_2$, $S_3 = \frac{1}{2}iu_3$. Due to the spatial *directions* of the regular tetraon structure (6.460) these three plane cyclic angular oscillations add together and give just one angular momentum component³⁷⁸ (6.479) $S_1 + S_2 + S_3 = -is_0 = -\frac{1}{2}iu_0.$ The symmetry tells us that this is just the same as the sum of their projections on the *direction* u_0 Adding these two contributions (6.477) and (6.479) together we have in total the added orientations (\pm) of angular momentum (6.467) $\Psi_{autoA}^{pqg-2} = i\Psi_{autoA}^{pqg-1} = i(-s_0+s_1+s_2+s_3) = (S_0^{\dagger}+S_1+S_2+S_3) = -iu_0.$ (6.480)To achieve the *quantity* of this we multiply with the *direction* of the information interaction -*i*u for the measurement, i.e., dual $q = (-\mathbf{s}_0 + \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{s}_3)\mathbf{u}_0 = -1$, for a *quantitative* cargo. ⁶ Given that $i^{-1}i = 1 = -ii \Rightarrow i^{-1} = -i$. We recall that *i* does not commute with 1-vectors §6.2.5.3 $i \cdot x = -x \cdot i$ or that $\mathbf{u} \cdot \mathbf{X} = -\mathbf{X} \cdot \mathbf{u}$ in the projection operation $P_{\mathbf{u}} \mathbf{X} = \mathbf{u}^{-1}(\mathbf{u} \cdot \mathbf{X}) = -\mathbf{u}^{-1}(\mathbf{X} \cdot \mathbf{u})$. Therefore, we will avoid the ambiguity in the intuitive interpretation of the definition by sticking to the 1-vector definition (6.469) and using the commuting pseudoscalar \dot{i} , $\dot{i}^2 = -1$ to make the dual transformation $\mathbf{x} = -i\mathbf{X} = -\mathbf{X}i \iff \mathbf{X} = i\mathbf{x} = \mathbf{X}i$. The transmitted information may lay in the transversal angular plane. ⁷⁸ For intuition, the reader can make an abstract association with three-phase electrical power. The alternating current synchronous oscillation in the three cores possesses each angular momentum from the progressive rotation of the generator. At the electrical motor, this three-phase angular momentum is added together to one resulting in angular momentum for the motor

©	Jens Erfurt Andre	esen, M.Sc. NBI-U	JCPH,	- 303 -
	Г		0	

For quotation reference use: ISBN-13: 978-8797246931

C Jens Erfurt Andresen, M.Sc. Physics, Denmark -302Research on the a priori of Physics For quotation reference use: ISBN-13: 978-8797246931

- 6.5.10. A Hypothetic Thought Intuition of One Four-Angular-Momenta Function - 6.5.10.5 The Regular Tetraon

- The transversal plane to this we express by the unit bivector $\mathbf{i} = \mathbf{i}\mathbf{u}$, normed as $\mathbf{i}^2 = -1.^{376}$ Projecting the regular tetraon four-angular-momenta bivectors $\Psi_{auto A}^{pqg^2} = \Psi_{auto A}$ into this plane *i direction*, we write by using the commuting chiral volume pseudoscalar $i^2 = -1$, $\Rightarrow i^{-1} = -i$.