

The Parity Inversion inherits the orientation problem and alters both chirality and spin simultaneal This distinguishing of orientation of chirality and $\operatorname{spin} 1 / 2$ in 3 -space gives us, for the autonomous $\Psi_{1 / 2}$ entity four cases of distinguishable qualities, $2 \times 2=4$ for one orientation of the first direction of $L_{1}=\frac{1}{2} \boldsymbol{i}_{1}$. The extra four from the parity inverted case are like mirrored ${ }^{370}$ qualities for opposite orientations. In the versor case of $\Psi_{\mathbb{H}} \in \mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$ the Parity Inversion is equivalent to reversion or Clifford conjugation and is used in the constitution demand $\Psi_{\mathbb{H}} \overline{\Psi_{H}}=\Psi_{\mathbb{H}} \widetilde{\Psi_{H}}=\Psi_{H H} \Psi_{\mathrm{HH}}^{\dagger}=\left|\Psi_{\mathbb{H}}\right|^{2}=1$.

Looking at Figure 6.23 the reader should note that for each chirality the four 1-vector tetraon directions $\mathrm{j}_{\mathrm{s} . . .}^{\mathrm{w}_{1 / 2}}$ (same display colour) or $\mathbf{j}_{\mathrm{d} . .}^{\mathrm{w}_{1 / 2}}$ form the vertex corners of a tetrahedron, and the opposite parity inverted 1 -vectors have its four triangular faces transversal. The circumscribed sphere volume of this tetraon has the radius $\left|j_{\mathrm{s} . . .}^{\mu_{1 / 2}}\right|=\left|\mathrm{j}_{\mathrm{d} \ldots / .}^{\mu_{1 / 2}}\right|=\left|\mathrm{L}_{\mathrm{s} \ldots}^{\mu_{s / 2}}\right|=\left|\mathrm{L}_{\mathrm{d} . . .}^{\Psi_{1 / 2}}\right|=\sqrt{3 / 4}=\sqrt{J^{2}}$
The founding idea for our basis $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ is defined to be dextral by objective construction. By multiplying these basis 1 -vectors we lift the 3 -space concept of physics into the closed even geometric algebra of versors $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$. Therefore, we call the quaternion basis $\left\{1, \boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right\}$ for dextral too, and further that $\left\{\frac{1}{2}, \mathrm{~L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}\right\}$ (6.443) is the dextral foundation of three angular momenta bivectors and a scalar forming the quaternion components
This we have combined into a versor idea of one four-angular-momentum function (6.439)
(6.445) $\quad \Psi_{\mathbb{H}}=\lambda_{0}+\lambda_{1} \boldsymbol{i}_{1}+\lambda_{2} \boldsymbol{i}_{2}+\lambda_{3} \boldsymbol{i}_{3} \in \mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$, where $\Psi_{\mathbb{H}}^{\dagger} \Psi_{\mathbb{H}}=1 \Leftrightarrow \lambda_{\mu} \lambda_{\mu}=1$, for $\mu=0,1,2,3$.

In the tradition we always need the reversed expression to make an observable, e.g., one $1=\Psi_{H} \Psi_{\mathbb{H}}^{\dagger}$ therefor we concern this Clifford conjugation reversion as representing the same entity $\Psi_{1 / 2}$ state. The impact of the difference between $\Psi_{\mathbb{H}}$ and $\Psi_{\mathbb{H}}^{\dagger}$ is in the need to multiply from left or right in a product (vice versa). Both Ψ_{HH} and $\Psi_{\mathrm{HI}}^{\dagger}=\widetilde{\Psi}_{\mathrm{HI}}$ are antagonists for observable existence, $\widetilde{\Psi}_{\mathrm{HH}} \Psi_{\mathrm{HH}}=1$. Compared with the autonomous snapshot (6.442) we see that the scalar component results in two cases $\left\langle\lambda_{0}\right\rangle_{1 / 2}= \pm \frac{1}{2}$, which can have an impact on the number of entity states of $\Psi_{1 / 2}$.
We then expect eight different categorical qualities of entities $\Psi_{1 / 2}$ in physical 3-space
After this internal autonomous idea of three orthogonal angular momentum components founded in circular oscillations, we shift back to the dialectic complement idea of angular development of these and find as an alternative to the versor function (6.445), the development fluctuating versor wavefunction (6.425) $\psi_{1 / 2}=\widehat{Q}=u_{0}+u_{3} \boldsymbol{i}_{3}+u_{1} \boldsymbol{i}_{1}+u_{2} \boldsymbol{i}_{2} \in \mathbb{H}$.
This is a merge by (6.414) $\psi_{ \pm 1 / 2}=\psi_{3 \pm}^{1 / 2}+\psi_{2 \pm}^{1 / 2}+\psi_{1 \pm}^{1 / 2}$ given by ideas in § 6.5.8.2 and (6.415)-(6.416), where the u_{μ} 's are trigonometric functions of a common development parameter.
6.5.9. The Internal Auto Synchronisation of an Indivisible-Atomic-Elementary Entity

The whole idea of one fundamental physical entity $\Psi_{1 / 2}$ presumes as an a priori demand, that all angular development internal in $\Psi_{1 / 2}$ is synchronised. That would say, that there has to be one common development parameter t given from one angular frequency energy reference ω. For simplicity we choose auto reference $|\omega|=1$, then we reduce to the phase development $\varphi \leftarrow \omega t$ We choose to define the internal direction $\boldsymbol{i}_{3}=\boldsymbol{i} \mathrm{e}_{3}$ defined by the measurable spin $1 / 2$ direction e_{3} in a stationary lab frame $\left\{\boldsymbol{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$. The $\Psi_{1 / 2}$ internal autonomous quaternion frame $\left\{1, \boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right\}$ is a circle oscillator rotated as (6.252) by the phase angle development $\phi_{3}= \pm \phi_{3, \omega}=\omega t$.
$\boldsymbol{i}_{k}\left(\phi_{3}\right)=\boldsymbol{i} \boldsymbol{\sigma}_{k}\left(\phi_{3}\right)=e^{i_{3} \phi_{3}} \boldsymbol{i}_{k}$.
The rotation is along \boldsymbol{i}_{3} around σ_{3} which is the undisturbed $\operatorname{spin}^{1} 2$ direction possessing the spin $1 / 2$ angular momentum $L_{3}= \pm \frac{1}{2} \boldsymbol{i}_{3}$. Now we include the two other internal autonomous orthogonal oscillating directions $e^{i_{1} \phi_{1}}$ and $e^{i_{3} \phi_{3}}$ that possess angular momentum $L_{1}= \pm \frac{1}{2} \boldsymbol{i}_{1}$ and $L_{2}= \pm \frac{1}{2} \boldsymbol{i}_{2}$.

For quotation reference use: ISBN-13: 978-8797246931

The synchronisation demand, that the development of the other angles is $\phi_{1}=\omega t+\theta_{1}$ and $\phi_{2}=\omega t+\theta_{2}$. The overall symmetry phase factor $\odot_{i_{3}}=\left\{\theta \rightarrow e^{i_{3} \theta} \mid \forall \theta \in\left[0,2 \pi[\}\right.\right.$ gives $\phi_{3}=\omega t+\theta$ Now the synchronisation demand can be written
$\phi_{3}= \pm \omega t+\theta+2 \pi n$
(6.447) $\quad \phi_{2}= \pm \phi_{3}+\theta_{2}+2 \pi n$
$\theta, \theta_{2}, \theta_{1} \in[0,2 \pi[$ and $n \in \mathbb{Z}$,
$\phi_{1}= \pm \phi_{2}-\pi+\theta_{1}+2 \pi n$
were we for intuition use $\theta_{1}=0$ for choosing $\phi_{1}= \pm \phi_{2} \pm \pi$ as 0 when ϕ_{3} is the driver.
We will not go further into what happens detailed inside entity $\Psi_{1 / 2}$, because the phase relation will be uncertain. What we have learned is that the normalized wavefunction for an entity $\Psi_{1 / 2}$ can be expressed as a versor quaternion (6.422) and (6.435)
(6.448) $U=\hat{Q}=\psi_{+1 / 2}=\left|\frac{3}{4},+\frac{1}{2}\right\rangle=u_{0}+u_{1} \boldsymbol{i}_{1}+u_{2} \boldsymbol{i}_{2}+u_{3} \boldsymbol{i}_{3} \in \mathbb{H}$

This is also what we call a 2-rotor from the even $\mathcal{G}_{0,2}(\mathbb{R})$ algebra isomorph with the $S U(2)$ group.
What we have learned from (6.444) is that a $\operatorname{spin}^{1} / 2$ shift orientation from $m=+1 / 2$ to $m=-1 / 2$ change the orientation in two of the three orthogonal Kepler plane directions, e.g., if we have

$$
\psi_{+1 / 2}=\left|\frac{3}{4},+\frac{1}{2}\right\rangle=u_{0}+u_{1} \boldsymbol{i}_{1}+u_{2} \boldsymbol{i}_{2}+u_{3} \boldsymbol{i}_{3} \in \mathbb{H}, \quad \text { for } m=+1 / 2,
$$

then for a $\operatorname{spin}^{1} / 2$ orientation shift, we can use
(6.450) $\quad \psi_{-1 / 2}=\left|\frac{3}{4},-\frac{1}{2}\right\rangle=u_{0}+u_{1} \boldsymbol{i}_{1}-u_{2} \boldsymbol{i}_{2}-u_{3} \boldsymbol{i}_{3} \in \mathbb{H}, \quad$ for $m=-1 / 2$,
in the \boldsymbol{i}_{3} plane direction of the measurement
The change of sign in one direction turns the chiral orientation from dextral to sinistral, vice versa. The reversal of a versor 2-rotor (this is equivalent to parity inversion in the dual 1-vector space)
(6.451) $U=\psi_{+1 / 2}=+u_{0}+u_{1} \boldsymbol{i}_{1}+u_{2} \boldsymbol{i}_{2}+u_{3} \boldsymbol{i}_{3}$, and $U^{\dagger}=\psi_{+1 / 2}^{\dagger}=+u_{0}-u_{1} \boldsymbol{i}_{1}-u_{2} \boldsymbol{i}_{2}-u_{3} \boldsymbol{i}_{3}$.

The idea for the wavefunction for a physical entity $\Psi_{1 / 2}$ is that all four versor coordinates u_{μ} are oscillating trigonometric reals, ${ }^{371}$ in a kind of synchronisation.
The strange thing with a versor $U \in \mathbb{H}$ is, that it is a 2-rotor in the geometric algebra $\mathcal{G}_{0,2}(\mathbb{R})$ containing a pqg-0 scalar plus a pqg-2 bivector, that looks like (6.143)
(6.452) $\quad U=u_{0}+u \boldsymbol{i}_{\mathrm{n}}, \quad$ where $\quad \boldsymbol{i}_{\mathrm{n}}=\boldsymbol{i n}=\left(u_{1} \boldsymbol{i}_{1}+u_{2} \boldsymbol{i}_{2}+u_{3} \boldsymbol{i}_{3}\right) / \sqrt{1-u_{0}^{2}}$, and $u^{2}=1-u_{0}^{2}$, (6.139). This we can interpret as a circle 1 -rotor in the $\mathcal{G}_{2}(\mathbb{R})$ plane of the bivector pseudoscalar $\boldsymbol{i}_{\mathrm{n}}$ direction that apparently can be written as

$$
U_{\varphi_{\mathrm{n}}}=u_{0}+u \boldsymbol{i}_{\mathrm{n}}=1 \cos 1 / 2 \varphi_{\mathrm{n}}+\boldsymbol{i}_{\mathrm{n}} \sin 1 / 2 \varphi_{\mathrm{n}}=e^{+\boldsymbol{i}_{\mathrm{n}} 1 / 2 \varphi_{\mathrm{n}}}=e^{i \mathrm{n}^{1} / 2 \varphi_{\mathrm{n}}}
$$

This simplified circle oscillation is insufficient in that the bivector direction $\boldsymbol{i}_{\mathbf{n}}=\boldsymbol{i n}$ is dependent on the oscillating versor coordinate functions $\left(u_{1}, u_{2}, u_{3}\right)$. Therefore, we need the full versor algebra $\mathcal{G}_{0,2}(\mathbb{R}) \subset \mathcal{G}_{3}(\mathbb{R})$ to describe a normalized wavefunction for an entity $\Psi_{1 / 2}$ in 3 -space of physics, also containing the even grades as a pqg-0 scalar plus pqg-2 bivectors. We recall the two orthogonal 1-spinors from (6.415)-(6.416) Q_{3} and Q_{1} in a basis $\left\{1, \boldsymbol{i}_{2}\right\}$ and get their combination (6.145f)
(6.454) $U=\psi_{+1 / 2}=\hat{Q}=u_{0}+u_{3} \boldsymbol{i}_{3}+u_{2} \boldsymbol{i}_{2}+u_{1} \boldsymbol{i}_{1}=\left(u_{0}+u_{3} \boldsymbol{i}_{3}\right) 1+\left(u_{2}-u_{1} \boldsymbol{i}_{3}\right) \boldsymbol{i}_{2}=Q_{3} 1+Q_{1} \boldsymbol{i}_{2}$

Here we cannot go further into the versor wavefunction than it has a unitary structure (6.451) for just one indivisible entity that we express as

$$
U U^{\dagger}=U^{\dagger} U=\psi_{+1 / 2} \psi_{+1 / 2}^{\dagger}=\psi_{+1 / 2}^{\dagger} \psi_{+1 / 2}=1=u_{0}^{2}+u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=|U|^{2}=1
$$

To get an intuition for the internal spatial structure of one entity $\Psi_{1 / 2}$ we return to the concept of angular momentum

[^0]For quotation reference use: ISBN-13: 978-8797246931

[^0]: That as the tradition can be expressed in a complex 2×2 matrix mentioned 86.4.5. Or here as two 1 -spinors (6.145)-(6.147), (6.415)-(6.416). These properly are governed by two synchronised angular development parameters, up to a phase factor © Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-299-\quad$ Volume I, - Edition 2-2020-22, - Revision 6, \quad December 2022

