
(6.442) $\quad \Psi_{\text {auto, 代 }}= \pm \frac{1}{2} \pm \frac{1}{2} \boldsymbol{i}_{1} \pm \frac{1}{2} \boldsymbol{i}_{2} \pm \frac{1}{2} \boldsymbol{i}_{3} \in \mathbb{H} \quad \Rightarrow \quad \mathrm{~L}_{\text {auto } \pm}^{\varphi_{1 / 2}}=\hbar\left(\Psi_{\text {auto,HI }} \mp \frac{1}{2}\right), \quad(\hbar=1)$.

The first expression can be combined in $2 \times 2 \times 2 \times 2=16$ ways
In the last expression $\mathrm{L}_{\text {auto } \pm}^{\Psi_{y,}}$, we have just removed the scalar part from the versor and have only the pure second grade bivector pqg-2 direction part left that can combine in $2 \times 2 \times 2=8$ ways. In all, three angular momentum components $\mathrm{L}_{k}=\frac{1}{2} \boldsymbol{i}_{k}$ and a scalar $\frac{1}{2}$ make a substance for a fourdimensional $1,3 \sim 1+3$ of real even grades 0,2 in $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$ as a dextral quaternion basis
(6.443) $\left\{1, \boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}:=\boldsymbol{i}_{1} \boldsymbol{i}_{2}\right\}=2\left\{\frac{1}{2}, \mathrm{~L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}=2 \mathrm{~L}_{1} \mathrm{~L}_{2}\right\}$,
where this four-dimensional $S^{3}$-symmetry idea is measured by one quantum count $\hbar=\hbar^{-1}=1$, just as the constant chronometer in Kepler's second law gives constant angular areas.
Kepler's principle permits plane elliptical movement of a satellite point, but here we concern with a circular symmetry distribution of matter without a central force because there is nothing in the center ${ }^{366}$ than the geometric point of the intersection of the three supported planes. We recall the three oscillating perpendicular areas shown in Figure 6.21 that we connect to the orthogonal basis for the algebra $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$ that we have shown is strongly interconnected.
Maybe an elliptical shape is possible because in (6.440) we only demand $\lambda_{\mu} \lambda_{\mu}=1, \mu=0,1,2,3,\left(\sum_{\mu}\right)$ to have a versor. The individual components operators $\lambda_{\mu}$ can fluctuate freely as long as they fulfil $\lambda_{\mu} \lambda_{\mu}=1$, for the interpretation of (6.440) as a versor $\widehat{\Psi}_{\mathrm{HH}}=\Psi_{\mathrm{H}}$ in an even algebra $\mathcal{G}_{0,2}$, and by that also a 2-rotor of 3 -space. ${ }^{367} \mathrm{We}$ ignore the elliptic possibility due to the lag of central force in the quantum mechanics interpretation of the oscillating 1-rotor $S^{1}$-symmetry $\left\{\theta \rightarrow e^{i \theta} \mid\right.$ for $\left.\forall \theta \in \mathbb{R}\right\}$, which we expand (threefold) to the $S^{3}$-symmetry, due to $i$ as a free direction.
The interconnectivity first expressed in (6.123) and confirmed by the operator interconnectivity (6.291)-(6.293a) make the three direction operations $\mathrm{L}_{k}=\frac{1}{2} \boldsymbol{i}_{k} \leftrightarrow \frac{1}{2} e^{+1 / 2 i_{k} \phi_{k}}$ point out a locality by the intersection of three perpendicular oscillator planes as one geometric center point with a resulting entangled state of one exclusive atomic-elementary ${ }^{368}$ entity $\Psi_{1 / 2}$
The angular momentum of one specific free locality $\Psi_{1 / 2}$ in 3 -space can easily exchange direction to one external direction of a field by aligning its rotation conical precession as a projection to this and achieving a component of $\operatorname{spin}^{1 / 2}$ angular momentum of quantum number $m= \pm \frac{1}{2} \hbar$ with specific orientation $u p+$ or down - along an external field gradient direction.
Do we use the traditional picture with 1 -vector gradient field $b\left(x_{3}\right) \mathrm{e}_{3}$ of angular momentum in a laboratory frame direction, we get for $\sigma_{3} \| e_{3}$ the projected spin angular momentum along $e_{3}$

- $+\frac{1}{2} \sigma_{3} \leftarrow+\frac{1}{2} \hbar \mathbf{e}_{3}$ for spin up ( + ),
- $-\frac{1}{2} \sigma_{3} \leftarrow-\frac{1}{2} \hbar \mathbf{e}_{3}$ for spin down $(-)$.

In the new picture with the transversal bivector gradient field $b\left(x_{3}\right) i \mathrm{e}_{3}$ of angular momentum in a laboratory frame direction we get for $\boldsymbol{i}_{3} \| \boldsymbol{i} \mathrm{e}_{3}$ the projected spin angular momentum along $\boldsymbol{i} \mathrm{e}_{3}$ plane.

- $+\frac{1}{2} i_{3} \leftarrow+\frac{1}{2} \hbar i \mathrm{e}_{3}$ for progressive spin ( + ) (up),
- $-\frac{1}{2} i_{3} \leftarrow-\frac{1}{2} \hbar i \mathbf{e}_{3}$ for retrograde spin ( - ) (down).

In this new picture, the spin $1 / 2$ angular momentum along the Kepler plane performs a progressive or retrograde cyclic oscillating rotation as an intrinsic quality of a fundamental local entity $\Psi_{1 / 2}$. Following the tradition, we will in this book when it is concerned spin $1 / 2$ often use the terms $u p$ or down, even when we mean the cyclic oscillating in the lane path $\odot$ of a unit circle. ${ }^{369}$ For a local entity $\Psi_{1 / 2}$ in 3 -space, which we describe by the even versor quaternion algebra $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$, there

We remember the Rayleigh distribution (3.143) and (6.398) of a circular oscillator
367 We remember that the plane directions of such a rotor is fluctuating in lab 3 space, with precession by interacting with a field ${ }^{38}$ By atomic-elementary, we mean that a fundamental indivisibe entiy of certain qualities is one quantum of entity existence. ${ }^{369}$ Lane path, because there is no satellite to orbit only a circle symmetric $\odot$ with a radial Rayleigh probability distribution.
© Jens Erfurt Andresen, M.Sc. Physics, Denmark
For quotation reference use: ISBN-13: 978-8797246931
are more possible qualities than $\operatorname{spin}^{1} / 2$. We have 16 possibilities in the 4-dimensional (6.442). When we first ignore the scalar freedom and only consider the spatial perpendicular directions into consideration, we only have 8 possibilities of different qualities.
6.5.8.7. Eight Qualitative States of a Spin $1 / 2$ Entity $\Psi_{1 / 2}$ in $\mathcal{Z}$ Space

The autonomous total angular momentum can be built in eight different ways in combination of the orthogonal angular momentum direction components (6.443) in an entity $\Psi_{1 / 2}$ volume with different chirality and spin as follows:

The total bivector angular momentum $\} \sim\{$ and the dual 1-vector forms Total, Components, Chirality, $\operatorname{Spin}_{3}$, $\mathrm{L}_{\mathrm{s}-++}^{\Psi_{1 / 2}}=-\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}, \quad$ sinistral, + $L_{s---}^{\psi_{1 / 2}}=-\mathrm{L}_{1}-\mathrm{L}_{2}-\mathrm{L}_{3}$, sinistral, -$\mathrm{L}_{\mathrm{d}--+}^{\Psi_{y / 2}}=-\mathrm{L}_{1}-\mathrm{L}_{2}+\mathrm{L}_{3}, \quad$ dextral, + $\mathrm{L}_{\mathrm{d}-+-}^{\Psi_{1 / 2}}=-\mathrm{L}_{1}+\mathrm{L}_{2}-\mathrm{L}_{3}$,
$\mathrm{L}_{\mathrm{d}-+-}^{\Psi_{y, t} \dagger}=\mathrm{L}_{\mathrm{s}+-+}^{\Psi_{1 / 2}}=+\mathrm{L}_{1}-\mathrm{L}_{2}+\mathrm{L}_{3}$,
$\mathrm{L}_{\mathrm{d}-\mathrm{t}}^{\Psi_{k} \dagger}=\mathrm{L}_{\mathrm{s}++-}^{\Psi_{k / 2}}=+\mathrm{L}_{1}+\mathrm{L}_{2}-\mathrm{L}_{3}$,
sinistral, +
sinistral, -
$L_{s---}^{\psi_{n}} \dagger=L_{d+++}^{\Psi_{1 / 2}}=+\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}$,
dextral, +
$\mathrm{L}_{\mathrm{s}-++}^{\Psi_{n}} \dagger=\mathrm{L}_{\mathrm{d}+--}^{\Psi_{1 / 2}}=+\mathrm{L}_{1}-\mathrm{L}_{2}-\mathrm{L}_{3}$,
dextral, $-\int$

|  |
| :---: |
|  |  |
|  |  |

These different combinations of bivectors result in the following impact

1. The shift of sign in one direction changes the chirality with dextral or sinistral orientation.
2. The shift of sign in two of three directions changes the spin up $(+)$ or down $(-)$ orientation.
3. The shift of sign in three directions is a parity inversion of 1 -vectors or just a versor
reversion that consists of the reversion of the total bivector, that shifts both above cases $1 . \& 2$
This combination of the 3 -space directions quality results in two main Categories: Chirality, and Spin for the volume of one entity $\Psi_{1 / 2}$
Chirality is the fundamental quality aspect of $\mathcal{3}$-space we first defined as the unit pseudoscalar orientation (6.22) and (6.23) of the sequential order of operations $\boldsymbol{i}=\sigma_{3} \sigma_{2} \sigma_{1}=-\sigma_{1} \sigma_{2} \sigma_{3}$. Or $1=\boldsymbol{i}_{3} \boldsymbol{i}_{2} \boldsymbol{i}_{1}=-\boldsymbol{i}_{1} \boldsymbol{i}_{2} \boldsymbol{i}_{3}$. It is sufficient to change the sign on one ( $k$ ) of the three basis elements $\sigma_{k}$ and $\boldsymbol{i}_{k}$ to change the chiral volume orientation.
The external impact of $\operatorname{spin}^{1 / 2}$ shift $\pm \mathrm{L}_{3}$ of the projection on an external
 direction happens without internal effort when one other compo- Figure 6.23 An autonomous entity $\Psi$ nent change too, e.g., $-\frac{1}{2} \mathrm{~L}_{1}=\mathrm{L}_{3} \mathrm{~L}_{2}=-\mathrm{L}_{3}\left(-\mathrm{L}_{2}\right)$ in (6.444) due has in all 8 internal directional cases to interconnectivity. (Two of three orthogonal circle oscillators shift orientation.) founded in in the dextral basis
What happens when the orientation of the total bivector expressed angular momentum is reversed in the same way as the versor $\Psi_{\mathbb{H}}$ (6.439) to the four-angular-momentum (6.441) $\Psi_{\mathrm{HI}}^{\dagger}=\widetilde{\mathrm{Y}_{\mathrm{HI}}}$ ?

Then all three orthogonal components of the circle oscillators are reversed, expressed as bivector angular momenta $\widetilde{\mathrm{L}_{k}}=\mathrm{L}_{k}^{\dagger}=-\mathrm{L}_{k}$ The dual picture of this is the total 1 -vector is parity inverted by Clifford conjugating $\widetilde{\mathrm{j}_{k}}=\overline{\mathrm{j}_{k}}=-\mathbf{j}_{k}$.
See a 1 -vector intuition of autonomy in Figure 6.23
founded in in the dextral basis $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}=2\left\{\mathbf{j}_{1}, \mathbf{j}_{2}, \mathbf{j}_{3}\right\} . \operatorname{In}(6.444)$ combined to a total $\mathbf{j}_{\ldots, \ldots}^{\Psi_{1 / 2}}= \pm \mathbf{j}_{1} \pm \mathrm{j}_{2} \pm$ f angular momentom $-\mathrm{J}_{1} \pm \mathrm{j}_{2}$ of angular momentum 1 -vect.
as intuition 1 -vector objects. Chirality: sinistral $\mathrm{j}_{\mathrm{s}_{2}, \ldots}^{\psi_{k}}$, or dextral $\mathrm{j}_{\mathrm{d}}^{\mu_{1,}}$ with $\operatorname{spin}$ up $(+$ ) or down $(-)$ in and the parity inversion of these. The total angular momentum directio perform a conic precession oscillation seen from the lab frame; cyclic rotate in all by the 1 -rotor $\odot_{3} e^{ \pm i_{3} \phi_{3}}$.

For quotation reference use: ISBN-13: 978-8797246931

