Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931
6.5.8.4. Versor Eigenwave-Function as for the Stationary State Existence of an Entity $\Psi_{1 / 2}$

The directional bivector eigenvalue-equations (6.369) $\leftarrow(6.334)$ joined by the Hermitian scalar $p q g-0$ operator eigenvalue-equations (6.371) $\leftarrow(6.335)$
(6.421) $\quad L_{3}\left|\frac{3}{4}, ~ \pm \frac{1}{2}\right\rangle_{3} \doteq \pm \frac{1}{2} \hbar i_{3}\left|\frac{3}{4}, ~ \pm \frac{1}{2}\right\rangle_{3} \quad$ and $\quad L^{2}\left|\frac{3}{4}, ~ \pm \frac{1}{2}\right\rangle \doteq-\hbar^{2} \lambda\left|\frac{3}{4} \pm_{\frac{1}{2}}\right\rangle$,
have the directional versor eigenstate (6.414)
(6.422) $\quad \psi_{+1 / 2}=\left|\frac{3}{4}+\frac{1}{2}\right\rangle=u_{0}+u_{3} i_{3}+u_{1} \boldsymbol{i}_{1}+u_{2} \boldsymbol{i}_{2}$. Similar for $\psi_{-1 / 2}=\left|\frac{3}{4},-\frac{1}{2}\right\rangle$

The reader should verify by recalling \S 6.5.5.2 that the operators we have defined by
$\mathrm{L}_{3}=\hbar \lambda_{3} i_{3}$, and $\mathrm{L}^{2}=\hbar^{2} \lambda_{r}^{2}=\hbar^{2} \lambda$, for $\hbar=1$ give these real eigenvalue coefficients pattern $j=\frac{1}{2} \Rightarrow \lambda=j(j+1)=\frac{3}{4} \Rightarrow m= \pm \frac{1}{2} \cong \lambda_{3} \Leftarrow \lambda_{3}^{2}=\frac{1}{4}$,
and for the first of (6.421) the directional transversal bivector eigenvalues $\pm \frac{1}{2} \hbar i_{3} .{ }^{363}$
We see that our versor wavefunction (6.422) is already normalized by using the reversed (6.423) $\psi_{+1 / 2}^{\dagger}=\left\langle\frac{3}{4},+\frac{1}{2}\right|=u_{0}-u_{3} i_{3}-u_{1} i_{1}-u_{2} i_{2}$

We have the unitary product for a versor inside the S^{3}-spherical symmetry
(6.424) $\quad\left\langle\frac{3}{4}, \left. \pm \frac{1}{2} \right\rvert\, \frac{3}{4}, \pm \frac{1}{2}\right\rangle=\psi_{ \pm 1 / 2}^{\dagger} \psi_{ \pm 1 / 2}=\hat{Q}^{\dagger} \hat{Q}=|\widehat{Q}|^{2}=u_{0}^{2}+u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=1$.

The designation $\pm 1 / 2$ in the versor wavefunction $\psi_{ \pm^{1 / 2}}$ can be omitted because it is just a versor
(6.425) $\quad \psi_{1 / 2}=\hat{Q}=u_{0}+u_{3} \boldsymbol{i}_{3}+u_{1} \boldsymbol{i}_{1}+u_{2} \boldsymbol{i}_{2} \quad \in \mathbb{H}$.

We use $\psi_{1 / 2}$ here for the versor to remember the mutual internal oscillations of the entity $\Psi_{1 / 2}$,
that has states depending on the mutual angular development of the u_{μ} 's.
6.5.8.5. The One Eigen-Versor Separated in 1-Spinor Angular-Momentum-Wavefunctions

For the versor state $\psi_{1 / 2}$ of an entity $\Psi_{1 / 2}$, we now separate it in the three orthogonal directions planes spanned from $\left\{\boldsymbol{i}_{k}\right\}, \quad \psi_{1 / 2}=\psi_{3 \pm}^{1 / 2}+\psi_{2 \pm}^{1 / 2}+\psi_{1 \pm}^{1 / 2} \sim\left(\psi_{1 \pm}, \psi_{2 \pm}, \psi_{3 \pm}\right)$.
We have for each ψ_{k+} circular wavefunction complementary directional angular momentum operators (6.279) we know are interconnected as (6.291)-(6.293a) for the circle oscillators

$$
\left(\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}\right)=\hbar\left(\lambda_{1} i_{1}, \lambda_{2} i_{2}, \lambda_{3} i_{3}\right),
$$

with a total of $\mathrm{L}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}=\lambda_{1} i_{1}+\lambda_{2} i_{2}+\lambda_{3} i_{3}$ (6.263), that we presume is not observable. We have seen, that the three component scalar operators λ_{k} for $\psi_{1 / 2} \sim|\lambda, \pm 1 / 2\rangle$ must fulfil (6.427) $\quad \lambda_{k} \lambda_{k}=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=\lambda_{r}^{2}=\lambda=\frac{3}{4}$
for the Hermitian scalar operator L^{2} in agreement with (6.335) and (6.421).
For these wavefunctions components $\psi_{k \pm}^{1 / 2}$, that possesses angular momentum $\left\langle\mathrm{L}_{\mathrm{k}}\right\rangle_{1 / 2}$, we note individually magnitudes $\left\langle\psi_{k \pm}^{1 / 2} \mid \psi_{k \pm}^{1 / 2}\right\rangle=\frac{1}{4}$ due to (6.407), (6.399) in association with their definition in section I. 3.3.1, (We avoid the parity inversion balance factor individual for these components). Then we write the simplified wavefunctions as 1 -spinors dilated $1 / 2$ from the 1 -rotor idea (6.241)

$$
\psi_{k+}^{1 / 2}=\frac{1}{2} e^{1 / 2 i_{k} \phi_{k}}=\frac{1}{2} U_{\phi_{k}}, \quad \text { and } \quad \psi_{k-}^{1 / 2}=\frac{1}{2} e^{-1 / 2 i_{k} \phi_{k}}=\frac{1}{2} U_{\phi_{k}}^{\dagger}
$$

These three oscillating 1 -spinors auto-commute individually with their own plane direction \boldsymbol{i}_{k}. The regular oscillating rotation components in each plane, originally generated by rotor sandwiches from definition (5.193), are now used with 1 -spinors in these planes,
(6.429) $\psi_{k \pm}^{1 / 2} \boldsymbol{i}_{k} \psi_{k \mp}^{1 / 2}=\left(\psi_{k \pm}^{1 / 2}\right)^{2} \boldsymbol{i}_{k}=\psi_{k \pm} \boldsymbol{i}_{k}=\frac{1}{4} U_{\phi_{k}}^{2} \boldsymbol{i}_{k}=\frac{1}{4} e^{ \pm i_{k} \phi_{k} \boldsymbol{i}_{k}} \sim \frac{1}{4} e^{ \pm i_{k}\left(\phi_{k}+1 / 2 \pi\right)}$
Here we have used that the unit area direction $\boldsymbol{i}_{k}=e^{i_{k} / 2 \pi \pi}$ is founded in just ${ }^{364}$ an angular phase $1 / 2 \pi$, as a factor for that direction $\boldsymbol{i}_{k}=\boldsymbol{i} \sigma_{k}=e^{ \pm 1 / i_{k} \pi} \leftarrow e^{ \pm 1 / 2 i_{k} \phi_{k}}$ given by that wave component
${ }^{363}$ This corresponds to the traditional complex number eigenvalue $\pm \frac{i}{2} \hbar$ where the direction is transcendental to our ideas. ${ }^{364}$ This angular phase area as a foundation unit principle was first formulated in Kepler's second law as a constant primary quality. (C) Jens Erfurt Andresen, M.Sc. Physics, Denmark \quad Research on the a priori of Physics \quad December 2022

For quotation reference use: ISBN-13: 978-8797246931
idea from the unitary group $U(1)$ that possesses the S^{1} circle symmetry
(6.430) $\quad S^{1} \leftrightarrow\left\{\forall(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}=\left\{(\cos \varphi, \sin \varphi) \in \mathbb{R}^{2} \mid \cos ^{2} \varphi+\sin ^{2} \varphi=1, \varphi \in \mathbb{R}\right\}=\left\{U_{\varphi}=e^{i \varphi} \in \mathbb{C} \mid \varphi \in \mathbb{R}\right\}$.

From this plane symmetry idea of 1 -rotors, we take the $1 / 2$, and use these three perpendicular circular 1 -spinors (6.428), which are oscillating multivectors of the form
(6.431) $\quad \psi_{k+}^{1 / 2}=\frac{1}{2} e^{+1 / 2 i_{k} \phi_{k}}=\frac{1}{2}\left(\cos 1 / 2 \phi_{k}+\boldsymbol{i}_{k} \sin 1 / 2 \phi_{k}\right)$

These components of transversal plane states consist each of an oscillating scalar plus an oscillating transversal bivector in the direction $\boldsymbol{i}_{k}=\boldsymbol{i} \boldsymbol{\sigma}_{k}=e^{\boldsymbol{i}_{k} 1 / 2 \pi}$.

6.5.8.6. The Versor Quaternion Spin $1 / 2$ entity Ψ

Adding these (6.431) orthogonal 1 -spinors as (6.409), we achieve a quaternion (6.131), (6.136)
(6.432) $\quad Q=\frac{1}{2} \sum_{k=1}^{3} \cos \frac{1}{2} \phi_{k}+\frac{1}{2} \sum_{k=1}^{3} \boldsymbol{i}_{k} \sin 1 / 2 \phi_{k} \quad=u_{0}+\mathrm{B}$

The first sum is a real scalar
(6.433) $u_{0}=\frac{1}{2} \sum_{k=1}^{3} \cos 1 / 2 \phi_{k}$

The last sum is a bivector where we use $u_{k}=\frac{1}{2} \sin \phi_{k}$, (with \pm hidden inside ϕ_{k})
(6.434) $\quad \mathrm{B}=\frac{1}{2} \sin \frac{1}{2} \phi_{1} \boldsymbol{i}_{1}+\frac{1}{2} \sin \phi_{2} \boldsymbol{i}_{2}+\frac{1}{2} \sin \phi_{3} \boldsymbol{i}_{3}=u_{1} \boldsymbol{i}_{1}+u_{2} \boldsymbol{i}_{2}+u_{3} \boldsymbol{i}_{3}=\operatorname{in} \sqrt{1-u_{0}^{2}}$.

Now we generalise this on the quaternion form for an indivisible physical entity $\Psi_{1 / 2}$ of 3 -space
(6.435) $Q=u_{0}+u_{1} \boldsymbol{i}_{1}+u_{2} \boldsymbol{i}_{2}+u_{3} \boldsymbol{i}_{3}$.

To make this quaternion a 2 -rotor versor of the closed quaternion group $\mathcal{G}_{0,2}(\mathbb{R})$ we demand that
(6.436) $\quad|Q|^{2}=Q \tilde{Q}=Q Q^{\dagger}=u_{0}^{2}+u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=u_{\mu} u_{\mu}=1 \quad \Rightarrow \quad Q=\widehat{Q}=U$.

We compare this with the complementary angular momentum operator form $(6.263) \rightarrow(6.316)$
(6.437) $L=\hbar\left(\lambda_{1} \boldsymbol{i}_{1}+\lambda_{2} \boldsymbol{i}_{2}+\lambda_{3} \boldsymbol{i}_{3}\right) \quad$ autonomous $\quad \mathrm{L}_{\text {auto }+}^{\Psi_{y / 2}}=\hbar\left(\pm \frac{1}{2} \boldsymbol{i}_{1} \pm \frac{1}{2} \boldsymbol{i}_{2} \pm \frac{1}{2} \boldsymbol{i}_{3}\right), \quad(\hbar=1)$.

Where we for the indivisible physical entity $\Psi_{1 / 2}$ are demanded by (6.427) to set
(6.438) $\quad \lambda_{k} \lambda_{k}=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=\frac{3}{4}, \quad$ autonomous $\quad \lambda=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}$
as the eigenvalue for the Hermitian scalar operator L^{2} from the equation $\mathrm{L}^{2}\left|\frac{3}{4}, ~ \pm \frac{1}{2}\right\rangle=-\hbar^{2} \frac{3}{4}\left|\frac{3}{4}, ~ \pm \frac{1}{2}\right\rangle$. At first sight this seems weird, why is the magnitude of the indivisible total active angular momentum not one whole 1 , but $3 / 4$. When we look at the versor quaternion form (6.435) we see beside the three bivector basis directions a scalar u_{0} (6.433). I suggest this is essential for the total. From this idea, we try to construct a versor for what I now call a four-angular-momentum $\Psi_{\mathbb{H}}=\lambda_{0}+\lambda_{1} \boldsymbol{i}_{1}+\lambda_{2} \boldsymbol{i}_{2}+\lambda_{3} \boldsymbol{i}_{3} \in \mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$,
where we add a synthetic essential scalar λ_{0} to the expression (6.437) so that we achieve one whole for an active angular 3 -space indivisible physical entity $\Psi_{1 / 2}$
(6.440) $\quad\left|\Psi_{H H}\right|^{2}=\Psi_{\mathbb{H}} \widetilde{\Psi_{H}}=\Psi_{H H} \Psi_{\mathbb{H}}^{\dagger}=\lambda_{0}^{2}+\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=\lambda_{\mu} \lambda_{\mu}=1, \quad(\hbar=1)$.

We have here used the reversed four-angular-momentum versor,
(6.441)

$$
\Psi_{H H}^{\dagger}=\lambda_{0}-\lambda_{1} \boldsymbol{i}_{1}-\lambda_{2} \boldsymbol{i}_{2}-\lambda_{3} \boldsymbol{i}_{3} \in \mathbb{H}
$$

that also is the Clifford conjugated $\widetilde{\Psi}_{\mathbb{H}}$ in $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$ of the versor (6.439) $\Psi_{\mathbb{H}}$.
We have above guessed, that each of the four quaternion state component dimensions - of the real even closed geometric algebra $\mathcal{G}_{0,2}(\mathbb{R})$ for a free autonomous ${ }^{365}$ indivisible physical entity $\Psi_{1 / 2}$ in a S^{3}-symmetric space structure - have the values $\left\langle\lambda_{\mu}\right\rangle_{1 / 2}=\lambda_{\mu}= \pm \frac{1}{2}$ and squared $\left\langle\lambda_{\mu}^{2}\right\rangle_{1 / 2}=\lambda_{\mu}^{2}=\frac{1}{4}$. Then in the simplified orthogonal perpendicular autonomous picture, we write

[^0]For quotation reference use: ISBN-13: 978-8797246931

[^0]: ${ }^{365}$ By free autonomous, we mean the highest internal symmetry for one indivisible existence without any interaction with external surroundings and no external quantitative norms. An initial frame is free. External classically this is called a force-free frame. © Jens Erfurt Andresen, M.Sc. NBI-UCPH $\quad-295$ - Volume I, - Edition 2-2020-22, - Revision 6, December 2022

