
(6.404) $\psi_{k \pm}^{1 / 2 \odot} \sim| \pm 1 / 2\rangle_{k} \sim \tilde{r}(\rho) \odot_{k} e^{ \pm \boldsymbol{i}_{k} 1 / 2 \phi_{k}} \sim \quad \sim \quad$ (simplified as) $\quad \widehat{\psi_{k \pm}^{1 / 2}} \sim e^{ \pm i_{k}{ }^{1 / 2} \phi_{k}} \in \mathbb{H} .{ }^{358}$

Each with specified \boldsymbol{i}_{k} directions, and all three acting together simultaneously
These are endowed with angular momentum eigenvalue bivectors $\mathrm{L}_{k}^{ \pm}= \pm 1 / 2 \hbar \boldsymbol{i}_{k}= \pm 1 / 2 \hbar \boldsymbol{i} \boldsymbol{\sigma}_{k}$ The equivalent rotors $U=e^{1 / 2 i \mathrm{~b}} \sim e^{i_{k} \frac{1}{2} \phi_{k}}$ possess the transversal plane normal-axial cylinder symmetry around the 1 -vector \mathbf{b}. This we know from the regular rotation (6.70) that acts on an arbitrary geometric (multi)-vector \mathbf{x} by canonical sandwiching by the rotor and its reversed $\mathcal{R} \mathbf{x}=U \mathbf{x} U^{\dagger}=e^{1 / 2 i \mathrm{~b}} \mathbf{x} e^{-1 / 2 i \mathrm{~b}}=e^{i \mathbf{b}} \mathbf{x}$
Whence we instead of the subton stats (6.402) in these directions use the rotor stats (6.404)
(6.406) $U=e^{+1 / 2 i \mathrm{~b}} \rightarrow$
$\overline{\psi_{k \pm}^{1 / 2}}=e^{ \pm i_{k}{ }^{1 / 2} \phi_{k}}$
as templet proportional to the spinor states for each $k=1,2,3$, with the symmetries $\odot_{k}=e^{i_{k} \theta}$
$\psi_{k \pm}^{1 / 2}(\rho)=\tilde{r}(\rho) \odot_{k} e^{ \pm i_{k} \frac{1}{2} \phi_{k}}$, for $\forall \rho \geq 0$
where $\int_{0}^{\infty} \psi_{k \pm}^{1 / 2} \psi_{k \pm}^{+1 / 2} d \rho=\left\langle\psi_{k \pm}^{1 / 2} \mid \psi_{k \pm}^{1 / 2}\right\rangle=\frac{1}{4}$.
We have three such components of orthogonal oscillating spinor states endowing angula momenta. We remember that these states do not commute as described in $\S 6.3 .5 .2$, therefor their individual independent directions σ_{k} cannot be reduced. (Their interconnectivity does the impact.) They exist in the planes of the exponential functions $e^{ \pm i_{k} \phi_{k}}$, that is the plane supported by the unit argument direction indicated by \boldsymbol{i}_{k}, which is the free eigen-planes of $\mathrm{L}_{k}^{ \pm}= \pm \hbar \boldsymbol{i}_{k}= \pm \hbar \boldsymbol{i} \boldsymbol{\sigma}_{k}$ For simplicity, we remove the distribution factor $\tilde{r}(\rho) \bigodot_{k}$ and replace it with the amplitude ϱ_{k}

$$
\psi_{k \pm}^{1 / 2}=\varrho_{k} e^{ \pm \boldsymbol{i}_{k}^{1 / 2} \phi_{k}}=\varrho_{k}\left(\cos 1 / 2 \phi_{k} \pm \boldsymbol{i}_{k} \sin 1 / 2 \phi_{k}\right) \quad \in \mathbb{H}, \quad \text { as (6.164)-(6.166) . }
$$

These three $\mathcal{G}_{0,2}(\mathbb{R})$ multivector state components can be linear combined for a full entity $\Psi_{1 / 2}$ $\psi_{ \pm}^{1 / 2}=\psi_{3 \pm}^{1 / 2}+\psi_{2 \pm}^{1 / 2}+\psi_{1 \pm}^{1 / 2} \quad \in \mathbb{H}$.
Special for the external chosen direction $\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}$, we change $\varrho=\varrho_{3}$ and $\phi=\phi_{3}$ (see (6.146)) $\psi_{3+}^{1 / 2}=\varrho_{3} e^{+i_{3} \frac{1}{2} \phi_{3}} \quad=\varrho\left(\cos 1 / 2 \phi+i_{3} \sin 1 / 2 \phi\right) \quad \in \mathbb{H}$.
For the other directions, we left multiply operate this by a quaternion spinor factor $\frac{1}{2} \frac{\rho}{\varrho} \boldsymbol{i}_{2} e^{i_{3}{ }^{1} / 2 \theta}$ (6.411) $\quad \frac{\rho}{2 \varrho} \boldsymbol{i}_{2} \odot_{3} \psi_{3+}^{1 / 2} \sim \quad \psi_{2+}^{1 / 2}=\frac{1}{2} \rho\left(\boldsymbol{i}_{2} \cos 1 / 2 \psi+\boldsymbol{i}_{1} \sin 1 / 2 \psi\right), \quad$ with $\psi=+\phi+\theta$ or operate (6.410) by the factor $\pm \frac{\rho}{2 \varrho} \boldsymbol{i}_{1} e^{i_{3} \frac{1}{2}(\theta \mp \pi)}$ and using e.g., $\pm \psi_{1}=\psi \mp \pi \leftarrow \phi+\theta$. (6.412) $\quad \pm \frac{\rho}{2 \varrho} \boldsymbol{i}_{1} \odot_{3} \psi_{3+}^{1 / 2} \sim \psi_{1 \pm}^{1 / 2}= \pm \frac{1}{2} \rho\left(\boldsymbol{i}_{1} \cos 1 / 2 \psi_{1}-\boldsymbol{i}_{2} \sin 1 / 2 \psi_{1}\right)=\frac{1}{2} \rho\left(\boldsymbol{i}_{1} \sin 1 / 2 \psi+\boldsymbol{i}_{2} \cos 1 / 2 \psi\right)$. Here we now use ρ as a real amplitude factor. ${ }^{359}$ We note the phase orientation for $\pm \frac{1}{2} \boldsymbol{i}_{1}$. These two (6.411)-0 are the same, whereby we can remove the factor $\frac{1}{2}$ and get
(6.413) $\quad \psi_{\perp+}^{1 / 2}=\psi_{2+}^{1 / 2}+\psi_{1+}^{1 / 2}=\rho\left(\boldsymbol{i}_{2} \cos ^{1 / 2} \psi+\boldsymbol{i}_{1} \sin 1 / 2 \psi\right)=\rho \boldsymbol{i}_{\perp}(1 / 2 \psi)$,
as a spinning bivector oscillation shown in Figure 6.16 in agreement with the impact of the interconnectivity expressed in (6.151)-(6.155). The independency $\phi \neq \psi$ is a phase factor θ. We note a quality, a phase shift 2π in e.g. ψ_{1} change the orientation of that contribution $\psi_{1 \pm}^{1 / 2}$.

6.5.8.3. The Oscillator Fluctuating Versor Wavefunction for the Entity $\Psi_{1 / 2}$ in 3 space

 The superposition of these by (6.409) gives the quaternion (see § 6.4.4.3)(6.414) $\quad \psi_{ \pm 1 / 2}=\psi_{3 \pm}^{1 / 2}+\psi_{2 \pm}^{1 / 2}+\psi_{1 \pm}^{1 / 2}=\varrho\left(\cos 1 / 2 \phi+\boldsymbol{i}_{3} \sin 1 / 2 \phi\right)+\rho\left(\boldsymbol{i}_{2} \cos 1 / 2 \psi+\boldsymbol{i}_{1} \sin 1 / 2 \psi\right)$

$$
\sim U=\hat{Q}=u_{0}+u_{3} \boldsymbol{i}_{3}+u_{1} \boldsymbol{i}_{1}+u_{2} \boldsymbol{i}_{2} \quad \in \mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})
$$

This we compare to (6.168) using the definitions (6.145f)-(6.150) and find that the versor quaternion is fully capable to describe an entity $\Psi_{1 / 2}$ in 3 -space.
${ }^{38}$ The double k index $\boldsymbol{i}_{k} \phi_{k}$ in the exponent is not summed here in this \S when we are looking at the components. This is due to the causal sequential product operations do not commute
Here not as a polar coordinate for density distribution $\tilde{r}(\rho)$ in physical space. The replacement is rather $\rho \leftrightarrow\langle\tilde{r}(\rho)\rangle$.
© Jens Erfurt Andresen, M.Sc. Physics, Denmark $\quad-292-\quad$ Research on the a priori of Physics

$Q_{3}=\left(u_{0}+u_{3} i_{3}\right)=\varrho e^{+i_{3} \frac{1}{2} \phi} \in \mathbb{H}$
(6.416) $Q_{1}=\left(u_{2}-u_{1} i_{3}\right)=\rho e^{-i_{3} \frac{1}{2} \psi} \in \mathbb{H} \quad \leftrightarrow \quad \beta=z_{1}=\rho e^{-i^{1 / 2} \psi} \quad \in \mathbb{C}$, \quad as (6.171)

The condition (6.150) fulfil a 4-dimensional \mathbb{R}^{4} unit sphere with S^{3} symmetry
(6.417) $\quad S^{3}=\left\{\forall\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{4} \mid u_{0}^{2}+u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=1\right\}=\left\{\left.\forall\left(z_{1}, z_{3}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}+\left|z_{3}\right|^{2}=1\right\}=\{\forall \hat{Q} \in \mathbb{H}| | \hat{Q} \mid=1\}$. This abstract S^{3}-spherical symmetry of 3 -space is the fundament for the isomorphic structure of the versor-quaternion group of the geometric algebra, the lifted Pauli group, and the 2×2 complex matrix group $S U(2)(6.175)$ in a way that its elements possess the primary quality of a free entity $\Psi_{1 / 2}$ in 3-space.
All the possible traditional two angular spherical coordinates $(1, \theta, \varphi)$, the polar angle θ, and the azimuthal angle φ describe all directions in a unit sphere. For completeness, we include a third quantum mechanics phase angle from $\odot \leftrightarrow U(1)$ for the overall symmetry consideration.
The total spherical symmetry is broken by an external field possessing angular momentum creating a conical precession of angular momentum of an entity $\Psi_{1 / 2}$ interpreted from the external as displayed in Figure 6.22. This field can be established by an inhomogeneous magnetic field as in the Stern-Gerlach experiment. The field gradient with a lab frame direction $\sigma_{3}=e_{3}$ consist of free subtons $\psi_{3 \pm} \sim e^{ \pm i_{3} \omega_{s} t}(6.402)^{360}$, that possess angular momentum $\mathbf{L}_{3}^{ \pm}= \pm \hbar i_{3}= \pm \hbar i \sigma_{3}$, with magnitude quantum $\hbar 1$, that interact as the symmetry braking mechanism. Here the exchange quantum is the subton $\Psi_{\omega_{s}}$ frequency energy $\hbar \omega_{s}$ as kinetic energy with the line momentum $(\hbar / c) \omega_{s}$ of one subton delivered to or from each entity $\Psi_{1 / 2}$.
The amount $\hbar \omega_{s}$ absorbed in or emitted from $\Psi_{1 / 2}$ by the subton is reasonably small compared to the internal oscillation energy ("mass") of $\Psi_{1 / 2}$, making it move up or down along the gradient ${ }^{361}$ $b\left(x_{3}\right) \mathrm{e}_{3}$ in the e_{3} direction of the inhomogeneous magnetic field as a transversal plane bivector $b\left(x_{3}\right) \boldsymbol{i e}_{3}$ in the experiment. Then the total angular momentum of $\Psi_{1 / 2}$ must be aligned to do a precession around $\sigma_{3}=\mathrm{e}_{3}$ along $i \mathrm{e}_{3}$ with the projection on this $L_{3}^{\Psi_{3 / 2}}= \pm \frac{1}{2} \hbar i_{3}= \pm \frac{1}{2} \hbar i \mathrm{e}_{3}$ The thought is that the first interaction with each $\Psi_{1 / 2}$ aligned $\operatorname{spin}^{1 / 2}$ parallel or antiparallel to the gradient randomly from the prerequisite direction of $\Psi_{1 / 2}$. Then the gradient direction locks the orientation of $\mathrm{L}_{3}^{\varphi_{1 / 2}}$ to $+\frac{1}{2} \hbar \boldsymbol{i} \mathrm{e}_{3}$ or $-\frac{1}{2} \hbar \boldsymbol{i} \mathrm{e}_{3}$. Further interaction with the magnetic field is then a polarized acceleration.
The S^{3}-spherical symmetry is broken to an intuitive conical lab average shown in Figure 6.22 The reader should compare this to (6.218)-(6.219), (6.223) considering the autonomous magnitude factor $\left|\mathrm{j}_{+}^{\Psi_{3}}\right|=\sqrt{3 / 4}|\mathrm{n}|$ and note (6.140)
(6.418) $\mathrm{n}:=\left(u_{1} \sigma_{1}+u_{2} \sigma_{2}+u_{3} \sigma_{3}\right) / \sqrt{1-u_{0}^{2}}=n_{1} \sigma_{1}+n_{2} \sigma_{2}+n_{3} \sigma_{3}$, where $|\mathrm{n}|=1$, and compare with the S^{2} spherical symmetry

$$
S^{2}=\left\{\forall\left(n_{1}, n_{2}, n_{3}\right) \in \mathbb{R}^{3} \mid n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1\right\}
$$

where the direction symmetry is broken by the projection (6.379), (6.388) $\mathrm{j}_{3} \rightarrow \mathrm{j}_{3}^{\mu_{1 / 2}}= \pm \frac{1}{2} \hbar \sigma_{3}$, that we interpreted from the external frame $\left\{e_{1}, e_{2}, e_{3}\right\}$ where $\sigma_{3}=e_{3}$, therefor we write
$j_{3}^{w_{1 / n}}= \pm \frac{1}{2} \hbar \mathbf{e}_{3} .{ }^{362}$
${ }^{360}$ The thought experiment here is, that the static magnetic gradient consists of up subtons $e^{+i_{3} \omega_{s} t}$ and down subtons $e^{-i_{3} \omega_{s} t}$ which as energy flow balance each other but give a resulting angular momentum, that can interact with our $e n t i t y ~ \Psi_{1 / 2}$ ${ }^{361}$ We use a real scalar function $b\left(x_{3}\right) \in \mathbb{R}$ as a coefficient to the direction e_{3} to describe the gradient field along the coordinate x_{3}. ${ }^{362}$ Remember that the unit of e_{3} must be one $\left|e_{3}\right|=1=\hbar$ in a quantum unit system. In other systems, e_{3} can have the unit $\left[\hbar^{-1}\right]$. © Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-293-\quad$ Volume I, - Edition 2-2020-22, - Revision 6, \quad December 2022

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

