

Vice versa, seen from the lab the total angular momentum 1 -vector $\mathrm{j}_{ \pm}^{j_{1 / 2}}=-\boldsymbol{i} L_{ \pm}^{\nu_{1 / 2}}$ of $\Psi_{1 / 2}$ is making a conical precession displayed in Figure 6.22.
This lab relation oscillation does not affect the chosen direction $\sigma_{3}=\mathrm{e}_{3}$.
6.5.7. Synthesis of the Locality of Entities in 3-space

In this \S we omit $\hbar=1$ display in the formulas to keep the argumentation of the idea loud and clear. We have above argued for the three angular momentum component possibilities (as operators) L_{1}, L_{2} and L_{3} in a 3 -space interpreted as bivectors following the geometric algebra $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$ expressed in the rules (6.123) and (6.130) as $\boldsymbol{i}_{1}=\boldsymbol{i}_{2} \boldsymbol{i}_{3}, \boldsymbol{i}_{2}=\boldsymbol{i}_{3} \boldsymbol{i}_{1}, \boldsymbol{i}_{3}=\boldsymbol{i}_{1} \boldsymbol{i}_{2}$ and this we write out by the general multivector product rule that handles the antisymmetries $(6.281) \leftarrow(6.55)$

$$
\boldsymbol{i}_{1}=\frac{1}{2}\left(\boldsymbol{i}_{2} \boldsymbol{i}_{3}-\boldsymbol{i}_{3} \boldsymbol{i}_{2}\right), \quad \boldsymbol{i}_{2}=\frac{1}{2}\left(\boldsymbol{i}_{3} \boldsymbol{i}_{1}-\boldsymbol{i}_{1} \boldsymbol{i}_{3}\right), \quad \boldsymbol{i}_{3}=\frac{1}{2}\left(\boldsymbol{i}_{1} \boldsymbol{i}_{2}-\boldsymbol{i}_{2} \boldsymbol{i}_{1}\right) .
$$

This expresses the interconnected antisymmetries between the quaternion perpendicular basis planes. The quantum mechanical antisymmetric commutation relation is expressed in (6.291)(6.293). While the corresponding geometric products are simplified in (6.291a)-(6.293a). All these antisymmetric interconnectivity relation shapes (gestalten) an entanglement of angular momentum subjects we now call bivector-eigenvalues for the physical subject planes (see (6.299))
$\mathrm{L}_{1}=\frac{1}{2} \boldsymbol{i}_{1}$,
$L_{2}=\frac{1}{2} \boldsymbol{i}_{2}$,
$\mathrm{L}_{3}=\frac{1}{2} \boldsymbol{i}_{3}, \quad$ or
$\mathrm{L}_{k}=\frac{1}{2} \boldsymbol{i}_{k},{ }^{355}$
that automatically fulfils the basic angular momentum quanta (6.291a)-(6.293a)
$L_{2} L_{3}=\frac{1}{2} L_{1}, \quad L_{3} L_{1}=\frac{1}{2} L_{2}, \quad L_{1} L_{2}=\frac{1}{2} L_{3}$
Two perpendicular plane objects, e.g., those represented by $L_{1}=\frac{1}{2} \sigma_{3} \sigma_{2}$ and $L_{2}=\frac{1}{2} \sigma_{1} \sigma_{3}$ intersect in a geometric line represented by the direction 1 -vector object σ_{3}. This line intersects its own dual transversal plane object represented by $\mathrm{L}_{3}=\frac{1}{2} i_{3}=\frac{1}{2} \sigma_{2} \sigma_{1}$ just in one point.
Three eigen-bivector angular momentum perpendicular plane objects (algebraically orthogonal) always intersect in one point and just one point in 3 -space! Therefore, one fundamental physical entity Ψ_{3} formed by these three angular momentum planes possess that property of locality as the quality idea Leibniz called analysis situs.
I now call it locus situs which makes the intersection of these three planes to the center point of an entity Ψ_{3} in physical 3-space.
Contrary we have the traditional dual picture with three 1 -vector eigenvalue angular momenta

$$
\mathbf{j}_{1}=\frac{1}{2} \sigma_{1}, \quad j_{2}=\frac{1}{2} \sigma_{2}, \quad j_{3}=\frac{1}{2} \sigma_{3}, \quad \text { or } \quad \mathbf{j}_{k}=\frac{1}{2} \sigma_{k} .
$$

We can intuit these generator directions as geometric linear axis, that can perform free line translations in 3-space, so that they likely do not intersect. The tradition has talked in a religious way to choose a point as origo for these three axes to intersect in a cartesian coordinate system. Fortunately, we are saved from this religion by the fact that (6.396) as (6.395) automatically fulfils (6.291a)-(6.293a) as three transversal bivectors formed by a geometric product of orthogonal pairs of 1 -vectors, that gives the concept of three transversal planes that always intersects
$\mathbf{j}_{3} \mathbf{j}_{2}=\boldsymbol{i} \frac{1}{2} \mathbf{j}_{1}, \quad \mathbf{j}_{1} \mathbf{j}_{3}=\boldsymbol{i} \frac{1}{2} \mathbf{j}_{2}, \quad \mathbf{j}_{2} \mathbf{j}_{1}=\boldsymbol{i} \frac{1}{2} \mathbf{j}_{3}, \quad$ these are equivalent to those in (6.395) These products send the 1 -vectors into the closed even quaternion (lifted Pauli) algebra. In all, the idea of quaternions basis in a real even closed geometric algebra $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$ helps us by the angular plane concept to see, that they autonomously are making (gestalten) a center point as a locality of an entity Ψ_{3} in physical 3-space. This locality center can be the origo point for the idea of cyclic oscillations.
These oscillations are mandatory to the idea of some internal phase angular frequency energy $\hbar \omega$ and to the idea of in space local situated energy at all. The tradition calls this mass: $m=\omega \hbar / \mathrm{c}^{2}$.
$\lambda_{k} \boldsymbol{i}_{k}| \pm 1\rangle_{k} \doteq \pm 1 \hbar \boldsymbol{i}_{k}| \pm 1\rangle_{k}$
This gives the free single directional eigen-bivector angular momentum $\mathrm{L}_{k}^{+}= \pm \hbar \boldsymbol{i}_{k}= \pm \hbar \boldsymbol{i} \boldsymbol{\sigma}_{k}$ The optional free subton eigen-rotor (wavefunction) for this we express as
(6.402) $\quad \psi_{k \pm}^{\odot} \sim| \pm 1\rangle_{k} \sim 2 \tilde{r}(\rho) \odot_{k} e^{ \pm i_{k} \omega_{k} t} \sim e^{ \pm i_{k} \omega_{k} t} \in \mathbb{H} . \quad$ (Only one free $\omega_{k}=\omega_{s}, \omega_{j \neq k}=0$). These external direction components are transversal plane circle oscillators. The free subton is what performs the communication of the entity $\Psi_{1 / 2}$ with the external surroundings by exchange of quanta of line momentum $(\hbar / c) \omega_{s}$ and kinetic energy by subton frequency energy $\hbar \omega_{s}{ }^{357}$
6.5.8.2 The Internal Oscillating Wavefunction Components

In the internal even $\mathcal{G}_{0,2}(\mathbb{R})$ algebra idea for these, we have the strong interconnectivity (6.123), (6.130) and (6.291a)-(6.293a) whereby we construct the component eigenvalue equations
$\lambda_{k} \boldsymbol{i}_{k}| \pm 1 / 2\rangle_{k} \doteq \pm 1 / 2 \hbar \boldsymbol{i}_{k}| \pm 1 / 2\rangle_{k}$
The interconnectivity entangled state components of eigen-spinors (phase wavefunctions) are
${ }^{356}$ The dilation factor ρ is transformed to probability density factor $\tilde{r}(\rho)$ of a radial coordinate ρ from a center in a plane. ${ }^{357}$ We may presume that the external frequency energy ω_{s} of subtons is much less than an oscillation internal in the entity $\Psi_{1 / 2}$, that external appears as mass $m \sim\left(\hbar / c^{2}\right) \omega_{k}$. This we hide autonomous $\left|\omega_{k}\right|=1$, so we only concern the phase parameter. Therefore a subton exchange does not alter the integrity of entity $\Psi_{1 / 2}$, but only breaks the direction symmetry by the angular momentum magnitude quantum $\hbar=1$. - More below § 6.5.8.3.
© Jens Erfurt Andresen, M.Sc. NBI-UCPH

For quotation reference use: ISBN-13: 978-8797246931

