
bivector component in that direction $\left\langle\mathrm{L}_{3}\right\rangle_{1 / 2}=\mathrm{L}_{3}^{\Psi_{1 / 2}}= \pm \frac{1}{2} \hbar \boldsymbol{i}_{3}$.
This eigenstate $\pm \frac{1}{2} \hbar i_{3}\left|\frac{3}{4}, ~ \pm \frac{1}{2}\right\rangle$ looks like the half of an external subton state direction, (6.232).
The other components are perpendicular oscillating angular momentum combined as

$$
\perp=\mathrm{L}_{1}+\mathrm{L}_{2}=\hbar \lambda_{1} \boldsymbol{i}_{1}(\phi)+\hbar \lambda_{2} \boldsymbol{i}_{2}(\phi)=\hbar e^{\iota_{3} \varphi} \boldsymbol{i}\left(\lambda_{1} \mathrm{e}_{1}+\lambda_{2} \mathrm{e}_{2}\right),
$$

with $\pm \boldsymbol{i}_{3}$ orientation of the oscillating direction hidden in the angular development $\phi= \pm \omega t$ For the intuition of this, we presume $\left\langle\lambda_{1}\right\rangle=\left\langle\lambda_{2}\right\rangle= \pm 1 / 2$ for ${ }^{352}$
(6.376) $\quad L_{\perp}^{\psi_{1 / 2}}=\left\langle\mathrm{L}_{\perp}\right\rangle_{1 / 2}=\left\langle\mathrm{L}_{1}+\mathrm{L}_{2}\right\rangle_{1 / 2} \approx \pm \frac{1}{2} \hbar\left(\boldsymbol{i}_{1}(\phi)+\boldsymbol{i}_{2}(\phi)\right)= \pm \frac{1}{2} \hbar e^{i_{3} \phi} \boldsymbol{i}\left(\mathrm{e}_{1}+\mathrm{e}_{2}\right)= \pm \frac{1}{2} \sqrt{2} \hbar i_{\perp}(\phi)$ The resulting total angular momentum oscillating bivector (rotating along the \boldsymbol{i}_{3} plane)
$L_{ \pm}^{\psi_{1 / 2}}=L_{\perp}^{\psi_{1 / 2}}+\mathrm{L}_{3}^{\Psi_{1 / 2}}= \pm \frac{1}{2} \hbar e^{i_{3} \phi} \boldsymbol{i}\left(\mathrm{e}_{1}+\mathrm{e}_{2}\right) \pm \frac{1}{2} \hbar i \sigma_{3}= \pm \frac{1}{2} \hbar\left(\sqrt{2} i_{\perp}(\phi)+\boldsymbol{i}_{3}\right)$,
and dual as oscillating 1 -vectors $\sigma_{\perp}(\phi)$ around σ_{3} relative to $\sqrt{1 / 2}\left(\mathrm{e}_{1}+\mathrm{e}_{2}\right)$ we have
(6.378) $j_{ \pm}^{\mu_{1 / 2}}(\phi)= \pm \frac{1}{2} \hbar\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right)= \pm \frac{1}{2} \hbar\left(e^{i \sigma_{3} \phi}\left(\mathrm{e}_{1}+\mathrm{e}_{2}\right)+\sigma_{3}\right)= \pm \frac{1}{2} \hbar\left(\sqrt{2} \sigma_{\perp}(\phi)+\sigma_{3}\right)$. Traditional this is displayed as a cone object with height $1 / 2$ and radius $\sqrt{1 / 2}$ with magnitude $\left|\mathbf{j}_{ \pm}^{\mu_{3}}\right|=\sqrt{3 / 4}$ in Figure 6.22. ${ }^{353}$ This is a simulated intuition of the entity $\Psi_{1 / 2}$ spinning around the 1 -vector angular momentum projection ${ }^{354}$
(6.379) $\quad j_{3} \rightarrow j_{3}^{\psi_{1 / 2}}= \pm \frac{1}{2} \hbar \sigma_{3}$
in a conical precession along the plane supported by \boldsymbol{i}_{3}. This intuition is overruled by the spherical symmetry locality in $\mathcal{3}$-space $\left\{\theta \rightarrow e^{i \theta} \mid\right.$ for $\forall \theta \in \mathbb{R}$, and $\left.\forall i \in \mathcal{Z}\right\}$. This symmetry demands, that all three angular momenta expressed in the interconnectivity relations (6.291)-(6.293a) equally important, but the commutation relation makes only one direction be external governing at the time, (our choice was $\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}$). We, therefore, write (6.374)
(6.380) $\quad\left\langle\lambda_{r}^{2}\right\rangle_{1 / 2}=\left\langle\lambda_{1}^{2}\right\rangle_{1 / 2}+\left\langle\lambda_{2}^{2}\right\rangle_{1 / 2}+\left\langle\lambda_{3}^{2}\right\rangle_{1 / 2}=\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{3}{4}$.

This total external direction-free symmetry suggests that
(6.381) $\quad \sqrt{\left\langle\lambda_{1}^{2}\right\rangle_{1 / 2}}=\sqrt{\left\langle\lambda_{2}^{2}\right\rangle_{1 / 2}}=\sqrt{\left\langle\lambda_{3}^{2}\right\rangle_{1 / 2}}=\frac{1}{2}$,
from this, we deduct the mean scalar values $\left\langle\lambda_{k}\right\rangle_{1 / 2}= \pm \frac{1}{2}$ In this autonomous freedom, we are given the full angular momentum operator (6.317) for the hole entity $\Psi_{1 / 2}$
(6.382) $j^{\mu_{1 / 2}}=\hbar\left(\lambda_{1} \sigma_{1}+\lambda_{2} \sigma_{2}+\lambda_{3} \sigma_{3}\right)$,
and dual from (6.316) the full transversal bivector operator

$$
\mathrm{L}^{\psi_{/}}=\hbar\left(\lambda_{1} \boldsymbol{i}_{1}+\lambda_{2} \boldsymbol{i}_{2}+\lambda_{3} \boldsymbol{i}_{3}\right)
$$

 The spin $1 / 2$ cone with the height projection $\mathbf{j}_{3}^{\mu_{1 / 2}}= \pm \frac{1}{2} \hbar \sigma_{3}, \quad(\hbar=1)$, and the transversal plane projection $\mathrm{j}_{\perp}(\phi)=\frac{1}{2} \hbar\left(\sigma_{1}+\sigma_{2}\right)=\frac{1}{2} \hbar \sqrt{2} \sigma_{\perp}(\phi)$, resulting in a 1 -vector $\mathrm{j}_{ \pm}^{\mathrm{v}}(\phi)$ in a resulting in a 1 -vector $\mathbf{j}_{ \pm}^{j_{2}}(\phi)$ in a
rotation symmetry $\left\{\theta \rightarrow e^{i_{3} \theta} \mid \forall \theta \in \mathbb{R}\right\}$ representing all conical directions of an oscillating rotation $e^{i \sigma_{3} \phi} \mathbf{j}_{ \pm}^{\Psi_{3}}(\phi+\theta)$ simultaneously (+ or -). E.g., as displayed $\mathrm{j}_{ \pm}^{\Psi_{3}}=\frac{1}{2} \sigma_{1}+\frac{1}{2} \sigma_{2} \pm \frac{1}{2} \sigma_{3}$. Seen from the external lab this hole frame $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ is rotating oscillating by the 1 -rotor $U_{\phi} \equiv e^{1 / i_{3} \phi}=e^{1 / 2 i_{3}(\pm \omega t+\theta)}$ By that the conical precession of the By that the conical precession
total angular momentum 1 -vector.
for the total angular momentum. Here in this chapter 6.5
we are concerned about this total angular momentum for only one fundamental entity $\Psi_{1 / 2}$.
We have separated this in three real linear independent orthogonal 1-vector directions $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ that results in their dual transversal bivector planes supported from the quaternion basis
$\left\{1, \boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right\}$ forming the even geometric algebra $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$ for a 2 -rotor. This makes it possible to make an epistemological new narrative for the support for the angular momenta of 1-spinor
${ }^{552}$ Factor $\sqrt{2}$ come from $\sqrt{\left\langle\mathbf{L}_{1}^{2}+\mathbf{L}_{2}^{2}\right\rangle}=\sqrt{\left\langle\lambda_{1}^{2} \boldsymbol{\sigma}_{1}^{2}+\lambda_{2}^{2} \boldsymbol{\sigma}_{2}^{2}\right\rangle}=\sqrt{\left\langle\lambda_{1}^{2}+\lambda_{2}^{2}\right\rangle}=\sqrt{1 / 2}=\frac{1}{2} \sqrt{2}=\frac{1}{2} \sqrt{\boldsymbol{\sigma}_{1}^{2}+\boldsymbol{\sigma}_{2}^{2}}$.
${ }_{353}$ The reader can compare this figuration with the orbital angular momentum cones from literature e.g., [9] figure 11.2.
${ }^{354}$ The reader shall note the fundamental symmetry concept of orthogonality makes the covariant projection part of the components
 © Jens Erfurt Andresen, M.Sc. Physics, Denmark
oscillators in these three perpendicular planes supported by \boldsymbol{i}_{k} 's, which is mutually orthogonal. They are interconnected, first expressed from the definition in (6.123) and consolidated in § 6.5.2 as the commutator relations for the angular momentum operator directions. The internal symmetry for the autonomy entity $\Psi_{1 / 2}$ makes the scalar operator components fixed as (6.300) to

(6.384) $\quad \lambda_{1}= \pm \frac{1}{2}, \quad \lambda_{2}= \pm \frac{1}{2}, \quad \lambda_{3}= \pm \frac{1}{2}$

For these internal autonomy expectations, we prescribe the eigenstate 1 -vector
$j_{\text {auto } \pm}^{\psi_{y, z}}=\hbar\left(\pm \frac{1}{2} \sigma_{1} \pm \frac{1}{2} \sigma_{2} \pm \frac{1}{2} \sigma_{3}\right)$
$\leftarrow\left\langle j^{\Psi_{1 / 2}}\right\rangle_{1 / 2} \sim\left\langle j_{1}^{\Psi^{\mu}}\right\rangle_{1 / 2}+\left\langle\mathbf{j}_{2}^{\Psi_{\mu / 2}}\right\rangle_{1 / 2}+\left\langle\mathbf{j}_{3}^{\Psi_{1 / 2}}\right\rangle_{1 / 2}$,
we presume the autonomous eigenstate bivector

$$
\text { (6.386) } \quad \mathrm{L}_{\text {auto } \pm}^{\Psi_{1 / k}}=\hbar\left(\pm \frac{1}{2} \boldsymbol{i}_{1} \pm \frac{1}{2} \boldsymbol{i}_{2} \pm \frac{1}{2} \boldsymbol{i}_{3}\right) \leftarrow\left\langle\boldsymbol{i}^{\left.\Psi^{\mu} /\right\rangle_{1 / 2}}=\left\langle\mathrm{L}^{\Psi_{1 / 2}}\right\rangle_{1 / 2} \sim\left\langle\mathrm{~L}_{1}^{\Psi_{y / k}}\right\rangle_{1 / 2}+\left\langle\mathrm{L}_{3}^{\Psi_{i / k}}\right\rangle_{1 / 2}+\left\langle\mathrm{L}_{3}^{\Psi_{\psi / k}}\right\rangle_{1 / 2}\right.
$$

The full angular momentum has the magnitude
$\left|j_{\text {auto } \pm}^{\psi_{\psi / L}}\right|=\left|L_{\text {auto } \pm}^{\psi_{y / 2}}\right|=\hbar \frac{\sqrt{3}}{2}$
$=\left|\left\langle j^{w_{k} / \lambda}\right\rangle=\left|\left\langle L^{\mu_{k} \lambda}\right\rangle\right|\right.$
The projection of $\left\langle\mathbf{j}^{\Psi_{k / k}}\right\rangle_{1 / 2} \rightarrow \mathbf{j}_{\text {auto } \pm}^{\Psi_{3}}$ on each oscillating rotation axis directions $\sigma_{k}=\sigma_{k}^{-1}$ is (6.388) $\quad \mathrm{j}_{k}^{\mu_{k / k}}=P_{\sigma_{k}}\left(\mathrm{j}_{\text {auto } \pm}^{\mu_{1 / 2}}\right)=\left(\mathrm{j}_{\text {auto } \pm}^{\Psi_{3}} \cdot \sigma_{k}\right) \sigma_{k}^{-1}=\left(\mathrm{j}_{\text {auto } \pm}^{\Psi_{3}} \cdot \sigma_{k}\right) \sigma_{k}= \pm \hbar \frac{1}{2} \sigma_{k}$,
that has the magnitude $\left|\mathrm{j}_{k}^{\Psi_{k / k}}\right|=\hbar \frac{1}{2}$. See Figure 6.22. -
How can we believe this rigid picture? It contradicts the interpretation of spin angular momentum in traditional quantum mechanics, where the origin of spin is categorised as transcendental.
The trick idea is, that we just chose the basis $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ and its dual quaternion basis $\left\{1, \boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right\}$ to represent the directions of the perpendicular angular momentum components $\mathrm{L}_{k}=\frac{1}{2} \boldsymbol{i}_{k}$ internal autonomous in the idea of an entity $\Psi_{1 / 2}$. This follows directly (6.300) from the geometric algebraic rules $\S 6.5 .4$ for the orthogonality idea lifted into the even real algebra $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$.

As we have seen in this book, the idea of angular momentum for a fundamental entity $\Psi_{1 / 2}$ is synthetic endowed to the circular plane symmetry expressed in the unitary circle group $U(1)$. For the object from the substance of each three directions \boldsymbol{i}_{k} this idea is
$\mathrm{L}_{k}^{\Psi_{k}} \leftarrow \odot_{k}=\left\{U_{\theta}: \theta \rightarrow e^{i_{k} \theta} \in U(1) \mid \forall \theta \in \mathbb{R}\right\}$.
An external symmetry view of the total angular momentum will hide the specific directions in the spherical symmetry as displayed in Figure 6.20, where all symmetry phase factors $e^{i \theta}$ for $\forall \theta \in\left[0,2 \pi\left[\right.\right.$ possesses all directions $\forall i \in \mathcal{Z}$ in $\mathcal{3}$-space described by the real even algebra $\mathcal{G}_{0,2}(\mathbb{R})$. This total spherical symmetry we can brake by an external field possessing an angular momentum. This can be established by an inhomogeneous magnetic field as in the Stern-Gerlach experiment. The field gradient with a lab frame direction $\sigma_{3}=\mathrm{e}_{3}$ consists of free subtons that possess quanta of bivector angular momentum $L_{3}^{ \pm}= \pm \hbar \boldsymbol{i}_{3}= \pm \hbar i \sigma_{3}= \pm \hbar \boldsymbol{i} \boldsymbol{e}_{3}$, external to the entity $\Psi_{1 / 2}$ This designates one symmetry direction

$$
\mathrm{L}_{3}^{ \pm} \rightarrow \odot_{3}=\left\{\theta \rightarrow e^{i_{3} \theta} \mid \forall \theta \in \mathbb{R}\right\} \rightarrow \quad \mathrm{L}_{3}^{\psi_{i, 2}}= \pm \frac{1}{2} \hbar \boldsymbol{i}_{3}
$$

that is represents the projection of the total fluctuation angular momentum on the symmetry chosen plane direction i_{3}, driven by the internal autonomous oscillation $U_{\phi}^{2}=e^{i_{3} \phi}$ that rotates the internal frame $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ and its dual basis $\left\{1, \boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right\}$ for our $\boldsymbol{e n t i t y}$ relative to our external world fixed lab frame $\left\{\mathbf{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}$ like (6.236)

$$
\sigma_{j}=U_{\phi} \mathbf{e}_{j} U_{\phi}^{\dagger}=U_{\phi}^{2} \mathbf{e}_{j}, \quad \text { and for the entity } \quad \Psi_{1 / 2}=U_{\phi}^{2} \Psi_{\mathrm{lab}},
$$

driven by the oscillating 1-rotor $U_{\phi}:=e^{1 / 2 i_{3} \phi} \leftarrow e^{1 / 2 i_{3}(\omega t+\theta)}$.
The reversed oscillating rotation of the lab, seen autonomous from the entity turns the lab frame $\mathrm{e}_{j}=U_{\phi}^{\dagger} \sigma_{j} U_{\phi}$. In this, the total angular momentum rotates as
(6.392) $\quad \mathrm{L}_{ \pm}^{\psi_{1 / h}}(\phi)=U_{\phi}^{\dagger} \mathbf{L}_{\text {auto } \pm}^{\psi_{1 / 2}} U_{\phi}, \quad$ and dual $\quad \mathbf{j}_{ \pm}^{\mu_{1 / 2}}(\phi)=U_{\phi}^{\dagger} \mathbf{j}_{\text {auto } \pm}^{\psi_{y / k}} U_{\phi}$,
(C) Jens Erfurt Andresen, M.Sc. NBI-UCPH,

