Researc

b

on

the

ρ

priori

of Physi

Ô

 $\boldsymbol{\Omega}$

ens

 $\left(T\right)$

rfurt

–II. The C	Geometry of Physics – 6. The Natural Space of Physics – 6.5. The Angular Momentum in 3 Space –					
(6.354)	only the pure scalar ground state (3.138) with <i>no direction</i> and no definite locality of any 3-space, where the tradition judge <i>a state of highest symmetry</i> . ⁹¹ For $j > 0$ there are $2j+1$ orthogonal eigenstates. We have the quantum number m , $ m \le j$ $j \in \mathbb{N} \Rightarrow m = \cdots, -2, -1, 0, 1, 2, \dots$, and half-integer $j \notin \mathbb{N} \Rightarrow m = \cdots, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \dots$.					
	The real excitation coefficients $c_{\pm}^* = c_{\pm}$ in (6.343) and (6.344) we will find by reversing					
(6.355)	$\langle \lambda, m = \lambda, m \rangle^{\intercal},$					
(6.356)	$\langle \lambda, m J_{-} = \langle \lambda, m+1 \hbar c_{+}(\lambda, m) .$					
<i></i>	And combining by multiplication (6.356) on (6.343) and using (6.327) (Just as [9]p.240)					
(6.357)	$\langle \lambda, m J_{-}J_{+} \lambda, m \rangle = \hbar^{2} c_{+}(\lambda, m) ^{2} \langle \lambda, m+1 \lambda, m+1 \rangle$					
	$= \langle \lambda, m (J^2 - J_3^2 - \hbar \mathbf{j}_3) \lambda, m \rangle = \hbar^2 (\lambda - m^2 - m) \langle \lambda, m + 1 \lambda, m + 1 \rangle.$ Hence the stepping coefficients using (6.347) are positive reals					
(6.358)	$c_{\pm}(\lambda,m) = \sqrt{j(j+1) - m^2 \mp m} .$					
	Then we find the step change eigenstates					
(6.359)	$J_{+} \lambda,m\rangle = \hbar\sqrt{(j-m)(j+m+1)} \lambda,m+1\rangle, \qquad ([9](11.42))$					
(6.360)	$I_{-} \lambda,m\rangle = \hbar\sqrt{(j+m)(j-m+1)} \lambda,m-1\rangle.$ ([9](11.43))					
` ,	First when $m = \pm i$ there are no further steps.					
6.5.5.3.	. Excitation of Angular Momentum in 3 space					
We have the quantum numbers $j = 0, \frac{1}{2}, 1, \frac{3}{2},$ (6.351) for quantum excitation of 3-space.						
We skip $j = 0$ for the ground state and will below section 6.5.6 etc. look further at $j = \frac{1}{2}$.						
	For $j = 1$ we have three states $m = -1, 0, +1$, and $\lambda = 2$, that do ladder steps as					
(6.361)	$J_{+} 2,-1\rangle \doteq \hbar\sqrt{2} 2,0\rangle, \qquad J_{+} 2,0\rangle \doteq \hbar\sqrt{2} 2,+1\rangle, \qquad \text{from (6.35)}$	59),				
(6.361a)	$J_{-} 2,+1\rangle \doteq \hbar\sqrt{2} 2,0\rangle, \qquad J_{-} 2,0\rangle \doteq \hbar\sqrt{2} 2,-1\rangle, \qquad \text{from (6.36)}$	60).				
	There is a speciality with the state $ 2,0\rangle$ and the <i>directional</i> eigenstate equation (6.334)					
(6.362)	$\mathbf{j}_3 2,0\rangle = 0 2,0\rangle = 0,$ and its dual $\mathbf{L}_3 2,0\rangle = 0 2,0\rangle = 0.$ (Helium	-like)				
	Both the <i>directional</i> 1-vector $0\sigma_3 = 0$ and the dual bivector $0i_3 = 0$ represents void angular					
	momentum $L_k = 0$ dual $L_k = 0$, therefor no specific locality center at all. Where every null-					
	Else for excitation with $m = +1$, we get stats with spin one and a count of two (what two?).	с.				
(6.363)	$\mathbf{j}_3 2,\pm1\rangle \doteq \pm \hbar \boldsymbol{\sigma}_3 2,\pm1\rangle, \text{ and its dual } \mathbf{L}_3 2,\pm1\rangle \doteq \pm \hbar \mathbf{i}_3 2,\pm1\rangle.$					
(6.364)	$J^2 2,\pm1\rangle \doteq \hbar^2 2 2,\pm1\rangle$, and its dual $L^2 2,\pm1\rangle \doteq -\hbar^2 2 2,\pm1\rangle$.					
	Next for $j = \frac{3}{2}$, we have four states $m = -\frac{3}{2}$, $-\frac{1}{2}$, $+\frac{1}{2}$, $+\frac{3}{2}$ and $\lambda = \frac{15}{4}$, that do ladder steps a	as				
(6.365)	$J_{+} \left \frac{15}{4}, -\frac{3}{2} \right\rangle \doteq \hbar \sqrt{3} \left \frac{15}{4}, -\frac{1}{2} \right\rangle, \qquad J_{+} \left \frac{15}{4}, -\frac{1}{2} \right\rangle = \hbar 2 \left \frac{15}{4}, +\frac{1}{2} \right\rangle, \qquad J_{+} \left \frac{15}{4}, +\frac{1}{2} \right\rangle \doteq \hbar \sqrt{3} \left \frac{15}{4}, +\frac{3}{2} \right\rangle \text{from (6)}$	5.359),				
(6.365a)	$J_{-} \left \frac{15}{4}, + \frac{3}{2} \right\rangle \doteq \hbar \sqrt{3} \left \frac{15}{4}, + \frac{1}{2} \right\rangle, \qquad J_{-} \left \frac{15}{4}, + \frac{1}{2} \right\rangle = \hbar 2 \left \frac{15}{4}, -\frac{1}{2} \right\rangle, \qquad J_{-} \left \frac{15}{4}, -\frac{1}{2} \right\rangle \doteq \hbar \sqrt{3} \left \frac{15}{4}, -\frac{3}{2} \right\rangle \text{from (6)}$	5.360).				
	Next for $j=2$, we have five states $m=-2, -1, 0, +1, +2$, and $\lambda = 6$, that do ladder steps	as				
(6.366)	$J_{+} 6,-2\rangle \doteq \hbar 2 6,-1\rangle, J_{+} 6,-1\rangle \doteq \hbar \sqrt{6} 6,0\rangle, J_{+} 6,0\rangle \doteq \hbar \sqrt{6} 6,+1\rangle, J_{+} 6,+1\rangle \doteq \hbar 2 6\rangle$	<mark>6</mark> , +2⟩,				
(6.366a)	$J_{-} 6,+2\rangle \doteq \hbar 2 6,+1\rangle, J_{-} 6,+1\rangle \doteq \hbar \sqrt{6} 6,0\rangle, J_{-} 6,0\rangle \doteq \hbar \sqrt{6} 6,-1\rangle, J_{-} 6,-1\rangle \doteq \hbar 2 6\rangle$	<mark>6</mark> , −2⟩,				
	Eight eigenstates with integer <i>m</i> . After this etc. $j = \frac{5}{2}, 3, \frac{7}{2},$					
We will not go further into such excitation in this book but refer the reader to the general historical fabric of physical literature on <i>orbital</i> angular momentum excitations. Instead, we will go into the almost neglected 3-space structure of angular momentum of a fundamental <i>spin</i> ¹ / ₂ <i>entity</i> .						
© Jens E	Erfurt Andresen, M.Sc. Physics, Denmark -286 – Research on the a priori of Physics – Det	cember 2022				

For quotation reference use: ISBN-13: 978-8797246931

-6.5.6. The Spin¹/₂ of a Directional Entity of Locality in 3-space - 6.5.6.2 Symmetry Braking of the Half Spin 4¹/₂ Entity, 6.5.6. The Spin¹/₂ of a *Directional Entity* of Locality in 3-space 6.5.6.1. The fundamental first excitation of 3 space When $j = \frac{1}{2}$ we have $m = \pm \frac{1}{2}$, and $\lambda = \frac{3}{4}$, refer to (6.347) $(6.367) \qquad J_+ \left| \frac{3}{4}, -\frac{1}{2} \right\rangle \doteq \hbar 1 \left| \frac{3}{4}, +\frac{1}{2} \right\rangle,$ (6.368) $J_{-} \left| \frac{3}{4}, +\frac{1}{2} \right\rangle \doteq \hbar 1 \left| \frac{3}{4}, -\frac{1}{2} \right\rangle.$ These stats satisfy the *directional* eigenvalue equation $|\mathbf{j}_3|_{\frac{3}{2}}^{\frac{3}{2}},\pm\frac{1}{2}\rangle \doteq \pm\frac{1}{2}\hbar\sigma_3|_{\frac{3}{2}}^{\frac{3}{2}},\pm\frac{1}{2}\rangle$ $\mathbf{L}_{3}\left|\frac{3}{4},\pm\frac{1}{2}\right\rangle \doteq \pm\frac{1}{2}\hbar \mathbf{i}_{3}\left|\frac{3}{4},\pm\frac{1}{2}\right\rangle$ (6.369) and its dual By left multiplying with the reversed state $\left(\frac{3}{4}, \pm \frac{1}{2}\right)$ we find the average³⁵¹ in this *direction* $(6.370) \qquad \left\langle \frac{3}{4'} \pm \frac{1}{2} \right| \mathbf{L}_{3} \left| \frac{3}{4'} \pm \frac{1}{2} \right\rangle = \left\langle \frac{3}{4'} \pm \frac{1}{2} \right| \pm \frac{1}{2} \hbar \mathbf{i}_{3} \left| \frac{3}{4'} \pm \frac{1}{2} \right\rangle \implies \langle \mathbf{L}_{3} \rangle_{1/2} = \pm \frac{1}{2} \hbar \mathbf{i}_{3}, \text{ and dual } \langle \mathbf{j}_{3} \rangle_{1/2} = \pm \frac{1}{2} \hbar \boldsymbol{\sigma}_{3}.$ This has the real scalar eigenvalues $\langle \lambda_3 \rangle = \pm \frac{1}{2}$ for $\hbar = 1$, that is the same as (6.300) $\lambda_3 = \pm \frac{1}{2}$. These stats also satisfy the *no directional* scalar eigenvalue equation (6.335) (6.371) $J^{2}\left|\frac{3}{4},\pm\frac{1}{2}\right\rangle \doteq \hbar^{2}\frac{3}{4}\left|\frac{3}{4},\pm\frac{1}{2}\right\rangle.$ The expectation average value of this $\langle I^2 \rangle_{1/2} = \hbar^2 \frac{3}{4}$. Here we remember from (6.322) and (6.320) $J^{2} = \mathbf{j}_{1}^{2} + \mathbf{j}_{2}^{2} + \mathbf{j}_{3}^{2} = \hbar^{2}(\lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2}) \ge 0.$ (6.372)Due to the symmetry, we can write $\langle \lambda_k \rangle_{\frac{1}{2}} = \pm \frac{1}{2}$ and squared $\langle \lambda_k^2 \rangle_{\frac{1}{2}} = \frac{1}{4}$. Combining Pythagorean square, we get the squared radial magnitude of angular momentum $|\langle J^2 \rangle_{\frac{1}{2}}| = \langle \lambda_r^2 \rangle_{\frac{1}{2}} = \lambda = \frac{3}{4}$ (6.373)We compare this with (6.299) $\lambda_1^2 + \lambda_2^2 + \lambda_3^2 = \frac{3}{4}$ for an *entity* $\Psi_{1/2}$ that fulfils the even closed quaternion algebra $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$ and find that the eigenstate $\psi_{\pm}^{\frac{1}{2}} = \left|\frac{3}{2}, \pm\frac{1}{2}\right|$ is a quaternion 2-spinor supported from the basis $\{1, i_1, i_2, i_3\}$ for the even closed quaternion group (6.130). This shows: The geometric algebra $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$ is the foundation for the first excitation state $j = \frac{1}{2}$ (6.351) of angular momenta around a locality center *entity* $\Psi_{1/4}$. Such a state is called a *spin*^{1/2} state of an *entity* in a physical 3-space. Since Leibniz, it has been discussed that different extended solids cannot possess the same locality in space. This was reformulated by Pauli to the exclusion principle for the electron stats. Here we will just presume that distinguishable *entities* $\Psi_{1/2}$ do not possess the same locality center in space. This fundamental *quality* of *entities* $\Psi_{1/2}$ is in the tradition of *quantum* mechanics called Fermi particles. This is the quality we call an exclusive central locality with an internal ontological existence. Complementary expressed as the external S^2 symmetry sphere in 3-space. Some call these centres for *point-particles* as an a priori transcendental concept without any reality existence (no extension) and by that, no *directions* in space at all, as for geometrical points of pure *primary quality of zero grade*, that therefore not a physical *entity*, only the eternal ground state. Intuitively spoken a pure geometric point cannot possess any angular momentum. 6.5.6.2. Symmetry Braking of the Half Spin $\Psi_{\frac{1}{2}}$ Entity, Interaction by external subtons $\hat{\phi}_{3\pm} = |\pm 1\rangle_3 = e^{\pm i_3 \phi}$ (6.229) in the lab *direction* $\sigma_3 = e_2$ with quantised angular momentum $L_3^{\pm} = \pm \hbar i_3$, where $i_3 = i\sigma_3$, can be created e.g., by an external magnetic field gradient. This may alter the spherical symmetry of Ψ_{14} entities $(\lambda_r^2)_{\frac{1}{2}} = \langle \lambda_1^2 + \lambda_2^2 \rangle_{\frac{1}{2}} + \langle \lambda_3^2 \rangle_{\frac{1}{2}} = \frac{3}{4} = \frac{1}{2} + \frac{1}{4} \iff$ (6.374)In this state $|\frac{3}{4}, \pm \frac{1}{2}$ of the *directional entity* $\Psi_{1/2} = \Psi_3$, we have an angular momentum

Andres	(6.374)	quantised angular momentum $L_3^{\pm} =$ magnetic field gradient. This may a $\langle \lambda_r^2 \rangle_{\frac{1}{2}} = \langle \lambda_1^2 + \lambda_2^2 \rangle_{\frac{1}{2}} + \langle \lambda_3^2 \rangle_{\frac{1}{2}}$ In this state $ \frac{3}{4^{\prime}} \pm \frac{1}{2}\rangle$ of the <i>direction</i>	$\pm \hbar i_3$, where $i_3 =$ letter the spherical sy $= \frac{3}{4} = \frac{1}{2} + \frac{1}{4} \iff$ <i>al entity</i> $\Psi_{1/2} = \Psi_3$,	$i\sigma_3$, can be created of \forall mmetry of $\Psi_{\frac{1}{2}}$ entities $\langle \lambda_1^2 + \lambda_2^2 \rangle_{\frac{1}{2}} = \frac{1}{2}$ we have an angular of		
en	³⁵¹ Here in this context, we preferer auto-normalization $\left(\frac{3}{4}, \pm \frac{1}{2}\right \frac{3}{4}, \pm \frac{1}{2} \right) = 1$, just as $\hbar = 1$, when it comes to the second					
	© Jens E	rfurt Andresen, M.Sc. NBI-UCPH,	- 287 -	Volume I, – Edition 2 – 2020-2		
		For quotation reference us	se: ISBN-13: 9	78-879724693		

$$\Rightarrow \langle \lambda_1^2 + \lambda_2^2 \rangle_{\frac{1}{2}} = \frac{1}{2}$$

it as $\hbar = 1$, when it comes to timing measure $|\omega| = 1$, c=1

ISBN-13: 978-