

By making use of $J^{2}=\mathbf{j}^{2}$ we do not get rid of the mix of a scalar and a 1 -vector in the operator (6.330) $J_{ \pm} J_{\mp}=J^{2}-J_{3}^{2} \pm \hbar \mathbf{j}_{3}=J_{\perp}^{2} \pm \hbar \mathbf{j}_{3}$

$$
\sim\langle A\rangle_{0}+\langle A\rangle_{1}
$$

The total scalar operator $\mathrm{L}^{2}, \mathrm{j}^{2}$ and by that J^{2} commutes with the other operators
(6.331) $\quad\left[J^{2}, \mathrm{j}\right]=J^{2} \mathrm{j}-\mathrm{j} J^{2}=0$,
$\left[J^{2}, \mathrm{j}_{k}\right]=0$,
$\left[J^{2}, J_{ \pm}\right]=0$.
(6.332) $\left[j^{2}, j\right]=j^{2} j-j j^{2}=0$,
$\left[\mathrm{j}^{2}, \mathrm{j}_{k}\right]=0$,
$\left[\mathrm{j}^{2}, J_{ \pm}\right]=0$.

And their dual operators also commute with these scalar operators
(6.333)
$\left[\mathrm{L}^{2}, \mathrm{~L}\right]=\mathrm{L}^{2} \mathrm{~L}-\mathrm{LL}^{2}=0$,
$\left[\mathrm{L}^{2}, \mathrm{~L}_{k}\right]=0$,
$\left[\mathrm{L}^{2}, J_{ \pm}\right]=0$.

6.5.5. The Quantum Stats of the Locally Combined Angular Momentum

We now set a symbol for the total eigenstates $|\lambda, m\rangle$ for the local entity Ψ_{3} described by the two-angular-parameter S^{2} symmetry as arguments for quaternion 2 -spinors in the even $\mathcal{G}_{0,2}(\mathbb{R})$ geometric algebra for a 3 -space, as described in section 6.4.9
We interpret m and λ as real eigenvalue quantisation numbers for angular momenta of the $\mathcal{G}_{0,2}$ spinors expressed as $|\lambda, m\rangle \leftrightarrow \Psi_{3}$ for the local space entity.
The bindings for these stats we establish by directional bivector eigenvalue equations. ${ }^{349}$ First for direction, as we have seen earlier, we simulate the fundamental circle oscillators

$$
\text { quality of second grade } \quad(p q g-2) \rightarrow \mathcal{G}_{0,2} .
$$

And further the eigenvalue equation for the squared scalar operators J^{2}, alternative L^{2} both for no direction quality of zero grade, pqg-0 $\rightarrow \mathcal{G}_{0,2}$ in the even geometric algebra
(6.335) $\quad J^{2}|\lambda, m\rangle \doteq \hbar^{2} \lambda|\lambda, m\rangle \quad$ and its dual $\quad-L^{2}|\lambda, m\rangle \doteq \hbar^{2} \lambda|\lambda, m\rangle$.

These two different operators j_{3} and J^{2} commute, hence they have the same eigenstates $|\lambda, m\rangle$, and that is the same for their duals L_{3} and L^{2}.
We first ignore the total operator j or L and their specific components j_{1}, j_{2} and j_{\perp} or L_{1}, L_{2} and L_{\perp} as implicit because they are transcendental to our intuition and knowledge.
In general, we demand that an expectation value of an operator B is positive

$$
3^{2}\left|=|B|^{2}=B^{\prime} B \geq 0 .\right.
$$

This is the case for multivectors if we use $B^{\dagger}=\tilde{B}$ for the reversed sequential operation order
When we operate on quantum states $|\lambda, m\rangle$, this is expressed as
(6.337) $\left.\langle\lambda, m| B^{\dagger} B|\lambda, m\rangle=(B|\lambda, m\rangle)^{\dagger} B|\lambda, m\rangle=|B| \lambda, m\right\rangle\left.\right|^{2} \geq 0$.

Hereby we in agreement with (6.323)-(6.325) for the squared perpendicular conclude
(6.338) $\langle\lambda, m| J^{2}-J_{3}^{2}|\lambda, m\rangle=\langle\lambda, m| \mathrm{L}_{3}^{2}-\mathrm{L}^{2}|\lambda, m\rangle=\frac{1}{2}\langle\lambda, m| J_{+} J_{+}^{\dagger}|\lambda, m\rangle+\frac{1}{2}\langle\lambda, m| J_{+}^{\dagger} J_{+}|\lambda, m\rangle \geq 0$.

From the two eigenstates equations (6.335), and (6.334) squared, we find
(6.339) $\langle\lambda, m| J^{2}-J_{3}^{2}|\lambda, m\rangle=\langle\lambda, m| \mathrm{L}_{3}^{2}-\mathrm{L}^{2}|\lambda, m\rangle \sim \hbar^{2} \lambda-\hbar^{2} m^{2} \geq 0 \Rightarrow \lambda \geq m^{2} \geq 0$.

Due to, that the squared operators as scalars have no direction, they commute with all the multivector operators and they all have the same eigenstates $|\lambda, m\rangle$, we try to do ladder operation ${ }^{350}$ by now using the stepping multivectors operators $J_{ \pm}$.

349 To understand the directional eigenvalues consult § 6.4.9.1 formula (6.229)-(6.232)
${ }^{350}$ Just as in section I. 3.1.3 further expanded for the circle oscillator in section I. 3.3. as $a_{\odot \pm}^{\dagger}$
(C) Jens Erfurt Andresen, M.Sc. Physics, Denmark

284 _ Research on the a priori of Physics December 2022

6.5.5.2. The Quantum Ladder Step Operations in $\mathbf{3}$ space

We presume the changed state $J_{ \pm}|\lambda, m\rangle=J_{\mp}^{\dagger}|\lambda, m\rangle$ is the same as annihilation\creation of synchronised oscillators fulfilling (6.334), as we use these eigenvalue equations on this state and apply (6.311)-(6.314) to do the steps

(refer to [9]p. 239

(6.340) $\quad \mathrm{L}_{3} J_{+}|\lambda, m\rangle \doteq \hbar(m+1) J_{+}|\lambda, m\rangle \quad$ or its dual $\quad j_{3} J_{+}|\lambda, m\rangle \doteq \hbar(m+1) J_{+}|\lambda, m\rangle$.
(6.341) $\quad \mathrm{L}_{3} J_{-}|\lambda, m\rangle \doteq \hbar(m-1) J_{-}|\lambda, m\rangle . \quad$ or its dual $\quad j_{3} J_{-}|\lambda, m\rangle \doteq \hbar(m-1) J_{-}|\lambda, m\rangle$
and that also fulfil (6.335) due to the commutation relations (6.331)-(6.333)
$J^{2} J_{ \pm}|\lambda, m\rangle \doteq \hbar^{2} \lambda J_{ \pm}|\lambda, m\rangle$.
These exited stats (annihilation\creation) we try to estimate as
(6.343) $\quad J_{+}|\lambda, m\rangle \doteq \hbar c_{+}(\lambda, m)|\lambda, m+1\rangle$,
(6.344) $\quad J_{-}|\lambda, m\rangle \doteq \hbar c_{-}(\lambda, m)|\lambda, m-1\rangle$

These scalar factors $c_{ \pm}(\lambda, m)$ can be complex numbers, we choose to see them as reals, and put the uncertainty phase factor into the plane angular rotation symmetry $\odot_{i_{3}}=\left\{\theta \rightarrow e^{i_{3} \theta} \mid \forall \theta \in \mathbb{R}\right\}$.
From (6.339) $\lambda \geq m^{2}$ we see that m have its greatest value $j=\operatorname{Max}(m) \geq 0$ for any given $\lambda \geq 0$ In all cases for a fundamental entity Ψ_{3} (an atomic element), we presume a priori that
λ is finite (reasonably small), which thus assumed $j^{2} \leqslant \lambda$
In the max case $m=j$ an extra step with the same orientation is beyond the limit,
therefore, is demanded as void, thus we chose
(6.345) $\quad J_{+}|\lambda, j\rangle=0$

From this zero, the opposite orientation ladder step operator J_{-}is recreating the state $|\lambda, j\rangle$ where we from (6.330) get the eigenvalue equation $(\dot{\doteq})$ that results in a total eigenvalue combination
(6.346)

$$
J_{-} J_{+}|\lambda, j\rangle=\left(J^{2}-J_{3}^{2}-\hbar j_{3}\right)|\lambda, j\rangle \doteq\left(\lambda-j^{2}-j\right)|\lambda, j\rangle \quad=J_{-} 0=0
$$

This demands that for the possible j we can expect
(6.347) $\quad \lambda=j(j+1)$.

For the lowest case $j^{\prime}=\operatorname{Min}(m)$ an extra step with the same orientation is void $J_{-}\left|\lambda, j^{\prime}\right\rangle=0$

$$
J_{+} J_{-}\left|\lambda, j^{\prime}\right\rangle=\left(J^{2}-J_{3}^{2}+\hbar j_{3}\right)|\lambda, j\rangle \doteq\left(\lambda-j^{\prime 2}+j^{\prime}\right)\left|\lambda, j^{\prime}\right\rangle=J_{+} 0=0 .
$$

This demands that for the possible j^{\prime} we can expect
$\lambda=j^{\prime}\left(j^{\prime}-1\right)$.
Because we demand $j^{\prime} \leq j$ (6.347) combined with (6.349) we obtain $j^{\prime}=-j$
We here have two extreme states: top $\left|\lambda_{,}, j\right\rangle$ and bottom $\left|\lambda_{1}-j\right\rangle$, that fulfil
eigenvalue equations $J_{-} J_{+}|\lambda, j\rangle \doteq 0|\lambda, j\rangle$, and $\quad J_{+} J_{-}|\lambda,-j\rangle \doteq 0|\lambda,-j\rangle$.
The natural number of states $|\lambda, m\rangle$ with $[-j \leq m \leq j]$ from bottom to top is $2 j+1 \geq 1$. All the $n=2 j$ steps down and then all the $n=2 j$ steps up
(6.350) $\quad\left(J_{-}\right)^{n}|\lambda, j\rangle \propto|\lambda, j-n\rangle \quad=|\lambda,-j\rangle \quad$ and $\quad\left(J_{+}\right)^{n}|\lambda,-j\rangle \propto|\lambda, j\rangle$

The state quantum number m step by integer values trough $2 j+1 \in \mathbb{N}$ cases, as (6.343),(6.344)
Hence, j can take nonnegative half-integer values
(6.351) $j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$.

This will govern the eigenvalues to the direction operator L_{3} of the eigenvalue equation (6.334)
(6.352) $\quad \mathrm{L}_{3}|\lambda, m\rangle \doteq \hbar m \sigma_{3}|\lambda, m\rangle$.

The real scalar quantum eigenvalue can appear as
(6.353)
$\hbar m=\hbar j, \hbar(j-1), \hbar a(j-2), \ldots,-\hbar(j-2),-\hbar(j-1),-\hbar j$
where we note that $\hbar m \neq 0$, for $j \notin \mathbb{N}$, and special $j=0 \Rightarrow m=0$ with no existence of an entity Ψ_{3},
C Jens Erfurt Andresen, M.Sc. NBI-UCPH
For quotation reference use: ISBN-13: 978-8797246931

