

This is an a priori concept idea for quantum operations of angular momentum that possesses the primary qualities of directions. Two orthogonal angular momenta directions do not commute, but the interesting thing is, that all these orthogonal operator components anticommute

$$
\text { (6.294) } \quad \mathrm{j}_{k} \mathrm{j}_{j}+\mathrm{j}_{j} \mathrm{j}_{k}=0 \quad \text { and dual } \quad \mathrm{L}_{j} \mathrm{~L}_{k}+\mathrm{L}_{k} \mathrm{~L}_{j}=0 \quad \text { where } k \neq j \text {, for } j, k=1,2,3
$$

We simply see this by their definition, e.g., by the anti-version of (6.285)

$$
\text { (6.295) } \quad j_{2} j_{1}+j_{1} j_{2}=\hbar^{2} \lambda_{1} \lambda_{2} \sigma_{2} \sigma_{1}+\hbar^{2} \lambda_{1} \lambda_{2} \sigma_{1} \sigma_{2}=\hbar^{2} \lambda_{1} \lambda_{2}\left(\sigma_{2} \sigma_{1}+\sigma_{1} \sigma_{2}\right)=0
$$

The advantage of orthogonality for the algebraic structure of the geometric perpendicular planes for the angular momenta is, that it makes the scalar quality pqg-0 immaterial. ${ }^{338}$
The idea of angular momenta expressed as bivectors interact by a product resulting in a new bivector that stays inside the even closed algebra $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$, and their interconnectivity is expressed by the commutator product purely as the primary quality of second grade (pqg-2). If we use the traditional first grade (pqg-1) picture of the angular momentum 1-vector,
we must involve the third grade (pqg-3) chiral volume pseudoscalar \boldsymbol{i} in the interconnectivity commutator relation to staying inside the odd algebra. The product of two angular momentum $p q g$-1-vectors are direct lifted into the even algebra where their further product results will stay closed as pqg-2 bivectors when we stick to orthogonality.
As an a priori idea, angular momentum is a pqg-2 direction quality internal in a plane concept. ${ }^{339}$

Is worth for the reader to note the different sequential order notation for operators. In this bo

from right to left of the sequential operations, special when concerning multivector products. , we prefer operation interpretation
We remember the sequence definitions for the plane pseudoscalar $i_{3} \equiv \sigma_{2} \sigma_{1}$ and the chiral pseudoscalar $i \equiv \sigma_{3} \sigma_{2} \sigma_{1}$
In traditional QM we often see $-\hbar i$ written as \hbar / i, in its principle, it is 'only' a reversed order
${ }^{338}$ The concept of angular momentum as a bivector, hides implicit the substance of a physical circle oscillator, as the generator is expressed as an oscillating rotor e.g., $e^{ \pm i_{3} 1 / 2 \phi}$, where the scalar part of the oscillation as term $\cos ^{1 / 2 \phi},(\phi=\omega t)$ is hidden ${ }^{9}$ Kepler's second law
© Jens Erfurt Andresen, M.Sc. Physics, Denmark

As soon as it comes to the \mathcal{Z}-space concept, the even closed algebra $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$ does the work of interconnectivity entanglement internal for an entity Ψ_{3}
But the dual odd algebra pqg-1,3 with the 1 -vector representation of the angular momentum components may help us by the chirality volume pseudoscalar \boldsymbol{i} to analyse the direction interaction with the external surroundings.
6.5.2.2. Orthogonal Chirality of Angular Momenta in the Even $\mathcal{G}_{0,2}$ Geometric Algebra

As expressed in the quaternion picture (6.127)-(6.130) the bivector basis $\left\{\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right\}$ has the two opposite orientations of the triple product $\boldsymbol{i}_{1} \boldsymbol{i}_{2} \boldsymbol{i}_{3}=-1$ and $\boldsymbol{i}_{3} \boldsymbol{i}_{2} \boldsymbol{i}_{1}=+1$ as the two unit scalar orientations inside the closed even $0+2$-grade quaternion group with standard basis $\left\{1, \boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right\}$. The same chiral triple orthogonality rule we deducted for the closed interconnectivity of the three angular momentum operator components, in that we multiply $L_{1} L_{2}=\hbar \frac{1}{2} L_{3}$ (6.289) by L_{3} getting (6.296) $\quad \mathrm{L}_{1} \mathrm{~L}_{2} \mathrm{~L}_{3}=\hbar \frac{1}{2} \mathrm{~L}_{3} \mathrm{~L}_{3}=\hbar \frac{1}{2} \mathrm{~L}_{k}^{2}=\hbar^{3} \lambda_{1} \lambda_{2} \lambda_{3} \boldsymbol{i}_{1} \boldsymbol{i}_{2} \boldsymbol{i}_{3}=-\hbar^{3} \lambda_{1} \lambda_{2} \lambda_{3}=-\hbar^{3} \frac{1}{2} \lambda_{k}^{2}, \quad$ for $k=1,2,3$. etc. with equivalent for (6.291a)-(6.293a).
For the reversed order in the chiral angular volume, we have
(6.297) $\quad \mathrm{L}_{3} \mathrm{~L}_{2} \mathrm{~L}_{1}=-\hbar \frac{1}{2} \mathrm{~L}_{k}^{2}=\hbar^{3} \frac{1}{2} \lambda_{k}^{2}$

This symmetric interconnectivity between the bivector directions leads to $\lambda_{1}^{2}=\lambda_{2}^{2}=\lambda_{3}^{2}$, and using the fit demand $\lambda_{3}=2 \lambda_{1} \lambda_{2} \Rightarrow \lambda_{k}= \pm 2 \lambda_{k}^{2} \Rightarrow \lambda_{k}= \pm \frac{1}{2}$. This implis

$$
\lambda_{1}^{2}=\lambda_{2}^{2}=\lambda_{3}^{2}=\frac{1}{4}
$$

in this symmetric case and we further remark

$$
\lambda_{k} \lambda_{k}=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=\frac{3}{4}
$$

This (6.298) explicit the fact

$$
\lambda_{1}= \pm \frac{1}{2}, \quad \lambda_{2}= \pm \frac{1}{2}, \quad \lambda_{3}= \pm \frac{1}{2} .
$$

We presume the existence of an entity $\Psi_{1 / 2}$ for the positive case, which defines the operators
(6.301) $\quad \mathrm{L}_{1}=\hbar \frac{1}{2} \boldsymbol{i}_{1}, \quad \mathrm{~L}_{2}=\hbar \frac{1}{2} \boldsymbol{i}_{2}, \quad$ and $\quad \mathrm{L}_{3}=\hbar \frac{1}{2} \boldsymbol{i}_{3}, \quad$ (autonomous for an entity $\Psi_{1 / 2}, \hbar=1$).

In all, the interconnected orthogonal triple bivector product interaction results in a scalar
(6.302)
$L_{1} L_{2} L_{3}=-\hbar^{3} \frac{1}{8}, \quad$ and reversed $\quad L_{3} L_{2} L_{1}=+\hbar^{3} \frac{1}{8}$.
By this simple expression, we see that the reversed order in the directions of the angular momentum operations changes the chiral volume spin orientation just as the change of orientation for a single component e.g., $L_{3}= \pm \hbar \frac{1}{2} i_{3}$ by the scalar amount $\pm \hbar 1$.
The triple product (6.302) of orthogonal angular momentum bivector components describes the fundamental volume symmetry of an indivisible (atomic-element) entity $\Psi_{1 / 2}$ in 3 -space, just as the model (6.127)-(6.128) of grade $-2 \rightarrow 0$ in the even geometric algebra $\mathcal{G}_{0,2}(\mathbb{R})$ for quaternions \mathbb{H} in section 6.4.3.

For quotation reference use: ISBN-13: 978-8797246931

