

6．5．1．3．The Angular Momentum Operator

In $\mathcal{3}$－space we then write ${ }^{332}$ the traditional angular momentum operator
（6．266）$\hat{L}=\overrightarrow{\hat{q}} \times \frac{\hbar}{i} \boldsymbol{\nabla}=-\overrightarrow{\hat{q}} \times i \hbar \boldsymbol{\nabla}=-i \hbar(\overrightarrow{\hat{q}} \times \boldsymbol{\nabla})$ ．
Equivalent to this we define the bivector multiplication operator for angular momentum ${ }^{333}$
（6．267） $\mathrm{L}=\hbar \mathbf{q} \wedge \boldsymbol{\nabla} \quad=\hbar\left(q_{2} \frac{\partial}{\partial q_{3}}-q_{3} \frac{\partial}{\partial q_{2}}\right) \boldsymbol{i}_{1}+\hbar\left(q_{3} \frac{\partial}{\partial q_{1}}-q_{1} \frac{\partial}{\partial q_{3}}\right) \boldsymbol{i}_{2}+\hbar\left(q_{1} \frac{\partial}{\partial q_{2}}-q_{2} \frac{\partial}{\partial q_{1}}\right) \boldsymbol{i}_{3}$
Dual to this bivector operator we also have a 1 －vector operator for angular momentum
（6．268） $\mathrm{j}=-i \mathrm{~L}=-i \hbar \mathrm{q} \wedge \nabla$
$\leftrightarrow \quad \hat{L}$
Using the correspondence principle for the traditional $i \sim \sqrt{-1}$ in QM ，and ${ }^{334}$ the unit chirality volume pseudoscalar $\boldsymbol{i} \sim \sqrt{-1}$ we associate the $j^{\text {th }}$ directions σ_{j} with duality \boldsymbol{i}_{j} for momentum （6．269）$\vec{p}=\mathrm{p}=p_{1} \sigma_{1}+p_{2} \sigma_{2}+p_{3} \sigma_{3}$ ，
as operator components using the plane pseudo scalar quality $\boldsymbol{i}_{j} \sim \sqrt{-1}$
（6．270）$\quad \hat{p}_{1} \leftrightarrow \boldsymbol{i} \sigma_{1} \hbar \frac{\partial}{\partial q_{1}}=\boldsymbol{i}_{1} \hbar \frac{\partial}{\partial q_{1}}, \quad \hat{p}_{2} \leftrightarrow \boldsymbol{i} \sigma_{2} \hbar \frac{\partial}{\partial q_{2}}=\boldsymbol{i}_{2} \hbar \frac{\partial}{\partial q_{2}}, \quad \hat{p}_{3} \leftrightarrow \boldsymbol{i} \sigma_{3} \hbar \frac{\partial}{\partial q_{3}}=\boldsymbol{i}_{3} \hbar \frac{\partial}{\partial q_{3}}$. The reader may recall the correspondence with ladder operators（3．11）－（3．13）
（6．271）$\quad a_{j}:=\frac{1}{\sqrt{2}}\left(q_{j}+\frac{\partial}{\partial q_{j}}\right) \quad$ and $\quad a_{j}{ }^{\dagger}:=\frac{1}{\sqrt{2}}\left(q_{j}-\frac{\partial}{\partial q_{j}}\right)$ ．
Then for the 3 orthogonal directions and by（3．87）
（6．272）$\quad \hat{q}_{j}=\frac{1}{\sqrt{2}}\left(a_{j}+a_{j}^{\dagger}\right) \sim q_{j} \quad$ and $\quad \hat{p}_{j}=\boldsymbol{i}_{j} \frac{1}{\sqrt{2}}\left(a_{j}^{\dagger}-a_{j}\right) \sim \frac{1}{\hbar} p_{j} \quad$ or $\quad \frac{\partial}{\partial q_{j}}=\frac{1}{\sqrt{2}}\left(a_{j}-a_{j}^{\dagger}\right)$.
And further for the circular oscillations the lather operators（3．92）－（3．95）
（6．273）$\quad a_{k \pm}:=\frac{1}{\sqrt{2}}\left(a_{i} \mp \boldsymbol{i} a_{j}\right) \quad$ and $\quad a_{k \pm}^{\dagger}:=\frac{1}{\sqrt{2}}\left(a_{i}^{\dagger} \pm \boldsymbol{i} a_{j}^{\dagger}\right), \quad$ cyclic：$i, j, k=1,2,3$. etc．．．．section I．3．2－3．3．
In all，we for the angular momentum have the correspondence $(\hbar=1)$
（6．274）$\hat{L}=\overrightarrow{\hat{q}} \times \frac{\hbar}{i} \boldsymbol{\nabla} \quad \leftrightarrow \quad \mathrm{~L}=\hbar \mathbf{q} \wedge \boldsymbol{\nabla}=\hbar\left(\lambda_{1} \boldsymbol{i}_{1}+\lambda_{2} \boldsymbol{i}_{2}+\lambda_{3} \boldsymbol{i}_{3}\right)$
The substance of the bivector operator $\mathbf{q} \wedge \nabla$ is，that it just expresses the foundation of Kepler＇s second law，that in the tradition，says：A line segment q joining a planet and the Sun sweeps out equal angular areas $q \wedge \nabla$ per chronometric measure．
6．5．1．4．Excitation of Angular Momentum in three directions of 3 Space
In § 6．4．9．1（6．226）we recalled the quantum excitation of one free circle oscillation $\hat{L}_{3}|1, \pm 1\rangle \doteq \pm 1 \hbar|1, \pm 1\rangle$ ，with an eigenvalue as a 1 －vector $\vec{L}_{3}^{ \pm}$for the angular momentum of intern auto defined magnitude $\left|\vec{L}_{3}^{ \pm}\right|=\hbar=1$ ．This given 1 －vector \vec{L}_{3}^{+}direction we use to define the autonomic frame direction $\sigma_{3}:=\vec{L}_{3}^{+}$，which implies the dual frame plane direction（6．235）

$$
\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}=\mathrm{L}_{3}^{+}:=\boldsymbol{i} \vec{L}_{3}^{+}, \quad \text { as a transversal bivector for the free angular momentum } \mathrm{L}_{3}^{+}
$$

The idea of an orthonormal frame $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ for an 3 －space entity gives the idea of three free angular momentum excitation of isometric autonomic quanta $\left|\vec{L}_{1}^{ \pm}\right|=\left|\vec{L}_{2}^{ \pm}\right|=\left|\vec{L}_{3}^{ \pm}\right|=\hbar=1$ ，

$$
\sigma_{1}=\vec{L}_{1}^{+}, \quad \sigma_{2}=\vec{L}_{2}^{+}, \quad \text { and the first chosen direction } \quad \sigma_{3}:=\vec{L}_{3}^{+}
$$

With the use of the unit chiral volume \boldsymbol{i} ，we get the dual $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$ bivector basis $\left\{1, \boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right\}$ ， which encourages us to define three free angular momentum directions each of one quantum
${ }^{33}$ This idea is taken from Merzbacher［9］（11．3），p．233ff．and I．（3．69），（3．70），but the new is the transversal bivector formulation． ${ }^{333}$ We still use blue colour to indicate an operator．When it comes to multivector operators we only use the hat＾symbol for units． The two objects are not the same although they both squares to the same negative scalar unit -1 ．They by all means belong to two different narratives for an ontology of physical entities．
© Jens Erfurt Andresen，M．Sc．Physics，Denmark $\quad-276-\quad$ Research on the a priori of Physics－\quad December 2022
For quotation reference use：ISBN－13：978－8797246931
（6．277） $\mathrm{L}_{1}^{+}=\boldsymbol{i}_{1}, \quad \mathrm{~L}_{2}^{+}=\boldsymbol{i}_{2}$ and the first chosen $\mathrm{L}_{3}^{+}=\boldsymbol{i}_{3}$ ，
for the fictive states $|+1\rangle_{1}$ and $|+1\rangle_{2}$ joining the considered state $\hat{\phi}_{+}=|+1\rangle_{3} \sim e^{i_{3} \phi}$ ，（6．241）．
The idea is so simple，that the three angular momentum bivectors are perpendicular
（6．278）$L_{3}^{+} \perp L_{2}^{+} \perp L_{1}^{+} \perp L_{3}^{+}$，
when we try to describe the local directional autonomy of an entity in 3－space
The interconnectivity expressed by（6．123）and（6．126）demands that the two other states $|+1\rangle_{1}$ and $|+1\rangle_{2}$ are mixed．In the traditional quantum mechanics (QM) ，this is expressed as 1 －vector operator commutator relation $\left[\hat{L}_{1}, \hat{L}_{2}\right]=i \hbar \hat{L}_{3}$ in QM ，（3．77）and e．g．Merzbacher［9］（11．5） Here in the even closed geometric algebra $\mathcal{G}_{0,2}(\mathbb{R})$ with basis（6．126），$\left\{1, \boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}:=\boldsymbol{i}_{1} \boldsymbol{i}_{2}\right\}$ it is expressed as angular momentum bivector operators（without hats \wedge ）
（6．279）$\quad \mathrm{L}_{1}=\hbar \lambda_{1} \boldsymbol{i}_{1}, \quad \mathrm{~L}_{2}=\hbar \lambda_{2} \boldsymbol{i}_{2}$ ，and $\mathrm{L}_{3}=\hbar \lambda_{3} \boldsymbol{i}_{3}$ ，together with a scalar $\hbar \lambda_{0}=\hbar \lambda_{0} 1$ ． We intuit comprehend the component＇coordinates＇$\forall \lambda_{\mu} \in \mathbb{R}$ as real scalar operators ${ }^{335}$ that act on the three individual plane unit pseudoscalars $\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}$ ，which are interconnected（entangled） as a generating bivector basis for the entity Ψ_{3} in 3 －space as an even closed quaternion algebra $\mathcal{G}_{0,2}$ with the quaternion basis $\left\{1, \boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right\}$ ．
－Besides，dual to this，we too have its odd open algebra of pqg－1－vector perpendicular directions of the angular momentum pqg－1－vector operators
$j_{1}=\hbar \lambda_{1} \sigma_{1}, \quad j_{2}=\hbar \lambda_{2} \sigma_{2}, \quad$ and $j_{3}=\hbar \lambda_{3} \sigma_{3}$.
The reader should notice that the determent directions are linked by the odd basis $\left\{\sigma_{k}\right\}$ or the even basis $\left\{1, \boldsymbol{i}_{k}\right\}$ and the angular momenta variable magnitudes are expressed through the three component scalar operators $\lambda_{k} \in \mathbb{R}, \quad k=1,2,3$ for the orthogonal directions． The even algebra scalar λ_{0} is just without direction．

6．5．1．5．Commutator Products of Angular Momentum Bivectors and their Dual 1－vectors
In Geometric Algebra，we define the generalised commutator product of two multivectors
（6．281）$A \times B=\frac{1}{2}(A B-B A)$ ，
introduced（6．55）and § 6．2．5．6
In quantum mechanics，we define the commutator products of two operators A and B as
（6．282）$[A, B]=A B-B A$ ， introduced（2．51）
Translating this to geometric algebra we write
$[A, B]=2[A \times B]=A B-B A$
We then write the commutator product of the angular momentum bivector operators
（6．284）$\quad\left[\mathrm{L}_{1}, \mathrm{~L}_{2}\right]=2\left[\mathrm{~L}_{1} \times \mathrm{L}_{2}\right]=\mathrm{L}_{1} \mathrm{~L}_{2}-\mathrm{L}_{2} \mathrm{~L}_{1}=\hbar \mathrm{L}_{3}, \quad$ or by orthogonality just $\quad \mathrm{L}_{1} \mathrm{~L}_{2}=\hbar \frac{1}{2} \mathrm{~L}_{3}$ The reason for this is：
First，for 1－vector operator commutation using（6．280）joined by $\sim(6.279)$
（6．285）$\quad\left[j_{2}, j_{1}\right]=j_{2} j_{1}-j_{1} j_{2}=\hbar^{2} \lambda_{1} \lambda_{2} \sigma_{2} \sigma_{1}-\hbar^{2} \lambda_{1} \lambda_{2} \sigma_{1} \sigma_{2}=\hbar^{2} 2 \lambda_{1} \lambda_{2} \sigma_{2} \sigma_{1}=\hbar^{2} 2 \lambda_{1} \lambda_{2} i_{3} \sim \hbar L_{3}=\hbar^{2} \lambda_{3} i_{3}$ To make this fit we demand $\lambda_{3}=2 \lambda_{1} \lambda_{2}$ ．We note $\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3} \Rightarrow \mathrm{~L}_{3}=\boldsymbol{i} \mathrm{j}_{3}=\hbar \lambda_{3} \boldsymbol{i}_{3}=\hbar \lambda_{3} \boldsymbol{i} \sigma_{3}$ ， and compare with traditional $\mathrm{QM}(3.77)\left[\hat{L}_{1}, \hat{L}_{2}\right]=i \hbar \hat{L}_{3}$ ，whereby we now write
$\left[\mathbf{j}_{2}, \mathbf{j}_{1}\right]=\hbar \boldsymbol{i} \mathbf{j}_{3}=\hbar \mathrm{L}_{3}$
In a short form of angular momentum 1－vector multiplication，we just write

（6．287） $\mathbf{j}_{2} \mathbf{j}_{1}=\hbar \boldsymbol{i} \frac{1}{2} \mathbf{j}_{3}=\hbar \frac{1}{2} \mathrm{~L}_{3}$ ，

This product of 1 －vector operators is a bivector for the resulting angular momentum．${ }^{336}$
－Then，for the dual bivector product commutator we write using（6．279）and the idea（6．263）
${ }^{335}$ These four real scalar operators $\lambda_{\mu}, \mu=0,1,2,3$ are a priori unknown variable quantities transcendental to our intuition
${ }^{336}$ For intuition，the reader may benefit from Figure 5.5 and Figure 5．47．
© Jens Erfurt Andresen，M．Sc．NBI－UCPH，-277 －Volume I，－Edition 2－2020－22，－Revision 6，
\qquad

\qquad

© Jens Erfurt Andresen，M．Sc．NBI－UCPH，	$-277-$	Volume I，－Edition 2－2020－22，－Revision 6，	December 2022

