Resultied to blief peruse for research, reviews, or senorarry an	1ai y 515,	\bigcirc	
– II The Geometry of Physics – 6. The Natural Space of Physics – 6.5. The Angular Momentum in 3 Space –			
	09		
6.5.1.3. The Angular Momentum Operator	ne	(6	
In 3-space we then write ³³² the traditional angular momentum operator	a		
(6.266) $\hat{L} = \hat{\vec{q}} \times \frac{\hbar}{i} \nabla = -\hat{\vec{q}} \times i\hbar \nabla = -i\hbar (\hat{\vec{q}} \times \nabla).$	rc.		
Equivalent to this we define the bivector multiplication operator for angular momentum ³³³	Cr h	(6	
(6.267) $\mathbf{L} = \hbar \mathbf{q} \wedge \nabla \qquad = \hbar \left(q_2 \frac{\partial}{\partial q_2} - q_3 \frac{\partial}{\partial q_2} \right) \mathbf{i}_1 + \hbar \left(q_3 \frac{\partial}{\partial q_1} - q_1 \frac{\partial}{\partial q_2} \right) \mathbf{i}_2 + \hbar \left(q_1 \frac{\partial}{\partial q_2} - q_2 \frac{\partial}{\partial q_1} \right) \mathbf{i}_3.$	Research on the a <i>Geometric Critique of Pure</i>		
Dual to this bivector operator we also have a 1-vector operator for angular momentum	n Jue		
$(6.268) \mathbf{j} = -\mathbf{i}\mathbf{L} = -\mathbf{i}\hbar\mathbf{q}\wedge\mathbf{\nabla} \qquad \longleftrightarrow \qquad \hat{\mathbf{L}}$	0 <u>6</u>		
Using the correspondence principle for the traditional $i \sim \sqrt{-1}$ in QM, and ³³⁴ the unit chirality	<i>ff</i>		
volume pseudoscalar $i \sim \sqrt{-1}$ we associate the j^{th} <i>directions</i> σ_j with duality i_j for momentum		(6	
(6.269) $\vec{p} = \mathbf{p} = p_1 \boldsymbol{\sigma}_1 + p_2 \boldsymbol{\sigma}_2 + p_3 \boldsymbol{\sigma}_3,$	a re	(0	
as operator components using the plane pseudo scalar <i>quality</i> $\mathbf{i}_j \sim \sqrt{-1}$	M		
$(6.270) \qquad \hat{p}_1 \leftrightarrow \mathbf{i}\boldsymbol{\sigma}_1 \hbar \frac{\partial}{\partial q_1} = \mathbf{i}_1 \hbar \frac{\partial}{\partial q_1}, \qquad \hat{p}_2 \leftrightarrow \mathbf{i}\boldsymbol{\sigma}_2 \hbar \frac{\partial}{\partial q_2} = \mathbf{i}_2 \hbar \frac{\partial}{\partial q_2}, \qquad \hat{p}_3 \leftrightarrow \mathbf{i}\boldsymbol{\sigma}_3 \hbar \frac{\partial}{\partial q_3} = \mathbf{i}_3 \hbar \frac{\partial}{\partial q_3}.$	ni. Ath		
The reader may recall the correspondence with ladder operators (3.11) - (3.13)	Dr		
(6.271) $a_j \coloneqq \frac{1}{\sqrt{2}} \left(q_j + \frac{\partial}{\partial q_j} \right)$ and $a_j^{\dagger} \coloneqq \frac{1}{\sqrt{2}} \left(q_j - \frac{\partial}{\partial q_j} \right)$.	riori of		
Then for the 3 orthogonal <i>directions</i> and by (3.87)	O [†]	(6	
(6.272) $\hat{q}_j = \frac{1}{\sqrt{2}} \left(a_j + a_j^{\dagger} \right) \sim q_j$ and $\hat{p}_j = \mathbf{i}_j \frac{1}{\sqrt{2}} \left(a_j^{\dagger} - a_j \right) \sim \frac{1}{\hbar} p_j$ or $\frac{\partial}{\partial q_j} = \frac{1}{\sqrt{2}} \left(a_j - a_j^{\dagger} \right)$.			
And further for the circular oscillations the lather operators (3.92)-(3.95)	b Re		
(6.273) $a_{k\pm} \coloneqq \frac{1}{\sqrt{2}} \left(a_i \mp i a_j \right)$ and $a_{k\pm}^{\dagger} \coloneqq \frac{1}{\sqrt{2}} \left(a_i^{\dagger} \pm i a_j^{\dagger} \right)$, cyclic: $i, j, k = 1, 2, 3$.	asc asc		
etc section I. 3.2 - 3.3. In all, we for the angular momentum have the correspondence $(\hbar = 1)$	hysics Reasoning	(6	
(6.274) $\hat{L} = \vec{\hat{q}} \times \frac{\hbar}{i} \nabla \leftrightarrow \mathbf{L} = \hbar \mathbf{q} \wedge \nabla = \hbar (\lambda_1 \mathbf{i}_1 + \lambda_2 \mathbf{i}_2 + \lambda_3 \mathbf{i}_3)$	00 N		
The substance of the bivector operator $\mathbf{q} \wedge \nabla$ is, that it just expresses the foundation of		(6	
Kepler's second law, that in the tradition, says: A line segment \mathbf{q} joining a planet and the Sun sweeps out equal angular areas $\mathbf{q} \wedge \nabla$ per chronometric measure.		(6	
6.5.1.4. Excitation of Angular Momentum in three directions of 3 Space	E		
In § 6.4.9.1 (6.226) we recalled the <i>quantum</i> excitation of one <i>free</i> circle oscillation \vec{r}	ens	(6	
$\hat{L}_3 1,\pm1\rangle \doteq \pm 1\hbar 1,\pm1\rangle$, with an eigenvalue as a 1-vector \vec{L}_3^{\pm} for the angular momentum of intern auto defined magnitude $ \vec{L}_3^{\pm} = \hbar = 1$. This given 1-vector \vec{L}_3^{\pm} direction we use to define	ns E		
the autonomic frame <i>direction</i> $\sigma_3 \coloneqq \vec{L}_3^+$, which implies the dual frame plane <i>direction</i> (6.235)		(6	
(6.275) $\mathbf{i}_3 = \mathbf{i}\mathbf{\sigma}_3 = \mathbf{L}_3^+ \coloneqq \mathbf{i}\vec{L}_3^+$, as a transversal bivector for the free angular momentum \mathbf{L}_3^+ .], I f	(0	
(0.275) $r_3 = r_3 = r_3$, as a transversal of vector for the nee angular momentum r_3 . The idea of an orthonormal frame { σ_1 , σ_2 , σ_3 } for an 3-space <i>entity</i> gives the <i>idea</i> of three <i>free</i>	0 5		
angular momentum excitation of isometric autonomic <i>quanta</i> $ \vec{L}_1^{\pm} = \vec{L}_2^{\pm} = \vec{L}_3^{\pm} = \hbar = 1$,		(6	
(6.276) $\sigma_1 = \vec{L}_1^+, \sigma_2 = \vec{L}_2^+, \text{and the first chosen direction } \sigma_3 \coloneqq \vec{L}_3^+.$	$ 2\rangle$		
With the use of the unit chiral volume i , we get the dual $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$ bivector basis $\{1, i_1, i_2, i_3\}$,		(6	
which encourages us to define three free angular momentum <i>directions</i> each of <i>one quantum</i>	dreser		
332 This idea is taken from Merzbacher [9](11.3),p.233ff. and I. (3.69),(3.70), but the new is the transversal bivector formulation. 333 We still use blue colour to indicate an operator. When it comes to multivector operators we only use the hat^ symbol for units.	P C C		
334 The two objects are not the same although they both squares to the same negative scalar unit -1 . They by all means belong to two			
different narratives for an ontology of physical <i>entities</i> .	n	³³⁶ Fc	
\bigcirc Jens Erfurt Andresen, M.Sc. Physics, Denmark -276 Research on the a priori of Physics - December 2022	Jl	©	
For quotation reference use: ISBN-13: 978-8797246931			

© Copyrighted material from hardback: ISBN-13: 978-8797246931, paperback: ISBN-13: 978-8797246948, Kindle and PDF-file: ISBN-13: 978-8797246917

(6.277)	$\mathbf{L}_1^+ = \mathbf{i}_1, \qquad \mathbf{L}_2^+ = \mathbf{i}_2$ and the first chosen $\mathbf{L}_3^+ = \mathbf{i}_3$
(6.278)	for the fictive states $ +1\rangle_1$ and $ +1\rangle_2$ joining the const The idea is so simple, that the three angular momen $L_3^+ \perp L_2^+ \perp L_1^+ \perp L_3^+$,
	when we try to describe the local <i>directional</i> autono
	The interconnectivity expressed by (6.123) and (6.126)
	and $ +1\rangle_2$ are mixed. In the traditional <i>quantum mech</i>
	operator commutator relation $[\hat{L}_1, \hat{L}_2] = i\hbar \hat{L}_3$ in QM,
	Here in the even closed geometric algebra $\mathcal{G}_{0,2}(\mathbb{R})$ wit it is expressed as angular momentum bivector operator
(6.279)	$\mathbf{L}_1 = \hbar \lambda_1 \mathbf{i}_1, \mathbf{L}_2 = \hbar \lambda_2 \mathbf{i}_2, \text{ and } \mathbf{L}_3 = \hbar \lambda_3 \mathbf{i}_3,$
	We intuit comprehend the component 'coordinates' $\forall \lambda$
	on the three individual plane unit pseudoscalars i_1, i_2, i_3
	as a generating bivector basis for the <i>entity</i> Ψ_3 in 3-spa
	$\mathcal{G}_{0,2}$ with the quaternion basis $\{1, \mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3\}$.
	- Besides, dual to this, we too have its <i>odd open</i> algeb <i>directions</i> of the angular momentum <i>pqg</i> -1-vector <i>open</i>
(6.280)	$\mathbf{j}_1 = \hbar \lambda_1 \mathbf{\sigma}_1, \mathbf{j}_2 = \hbar \lambda_2 \mathbf{\sigma}_2, \text{ and } \mathbf{j}_3 = \hbar \lambda_3 \mathbf{\sigma}_3.$
	The reader should notice that the determent <i>directions</i>
	the even basis $\{1, i_k\}$ and the angular momenta variable
	three component scalar operators $\lambda_k \in \mathbb{R}$, $k=1,2,3$ for The even algebra scalar λ_0 is just without <i>direction</i> .
6515	. Commutator Products of Angular Momentum Bivectors
0.5.1.5	In Geometric Algebra, we define the generalised comm
(6.281)	$A \times B = \frac{1}{2}(AB - BA),$ intr
	In quantum mechanics, we define the commutator prod
(6.282)	$[A,B] = AB - BA, \qquad \text{intro}$
	Translating this to geometric algebra we write
(6.283)	$[A,B] = 2[A \times B] = AB - BA$
	We then write the <i>commutator</i> product of the angular n
(6.284)	$[\mathbf{L}_1, \mathbf{L}_2] = 2[\mathbf{L}_1 \times \mathbf{L}_2] = \mathbf{L}_1 \mathbf{L}_2 - \mathbf{L}_2 \mathbf{L}_1 = \hbar \mathbf{L}_3,$ or
-	The reason for this is: First, for 1-vector operator commutation using (6.280)
(6.285)	$[\mathbf{j}_2,\mathbf{j}_1] = \mathbf{j}_2\mathbf{j}_1 - \mathbf{j}_1\mathbf{j}_2 = \hbar^2\lambda_1\lambda_2\boldsymbol{\sigma}_2\boldsymbol{\sigma}_1 - \hbar^2\lambda_1\lambda_2\boldsymbol{\sigma}_1\boldsymbol{\sigma}_2 = \hbar$
	To make this fit we demand $\lambda_3 = 2\lambda_1\lambda_2$. We note i_3
	and compare with traditional QM (3.77) $[\hat{L}_1, \hat{L}_2] = i\hbar$
(6.286)	$[\mathbf{j}_2,\mathbf{j}_1]=\hbar \mathbf{i}\mathbf{j}_3 = \hbar \mathbf{L}_3.$
	In a short form of angular momentum 1-vector multipli
(6.287)	$\mathbf{j}_2\mathbf{j}_1 = \hbar \mathbf{i}_2^{-1}\mathbf{j}_3 = \hbar \frac{1}{2}\mathbf{L}_3,$
	This product of 1-vector operators is a bivector for the
	• Then, for the dual bivector product commutator we wri
	Ir real scalar operators λ_{μ} , $\mu=0,1,2,3$ are a priori unknown variable qu ion, the reader may benefit from Figure 5.5 and Figure 5.47.
	furt Andresen, M.Sc. NBI-UCPH, $-277 -$
Sens FI	-2/7 -

For quotation reference use: ISBN-13: 978-879724693

-6.5.1. One Quantum of Angular Momentum - 6.5.1.5 Commutator Products of Angular Momentum Bivectors and their

$= i_3,$

sidered state $\hat{\phi}_{+} = |+1\rangle_{3} \sim e^{i_{3}\phi}$, (6.241). ntum bivectors are perpendicular

omy of an *entity* in 3-space. b) demands that the two other states $|+1\rangle_1$ hanics (QM), this is expressed as 1-vector (3.77) and e.g. Merzbacher [9](11.5). ith basis (6.126), $\{1, i_1, i_2, i_3 \coloneqq i_1 i_2\}$ (without hats $^{)}$ rs together with a scalar $\hbar \lambda_0 = \hbar \lambda_0 1$.

 $\lambda_{\mu} \in \mathbb{R}$ as real scalar operators³³⁵ that act \mathbf{i}_3 , which are *interconnected* (entangled) ace as an even closed quaternion algebra

ora of *pqg*-1-vector perpendicular erators

are linked by the *odd* basis $\{\sigma_k\}$ or e magnitudes are expressed through the the orthogonal *directions*.

s and their Dual 1-vectors

nutator product of two multivectors roduced (6.55) and § 6.2.5.6 ducts of two operators A and B as oduced (2.51)

momentum **bivector operators** or by orthogonality just $\mathbf{L}_1 \mathbf{L}_2 = \hbar \frac{1}{2} \mathbf{L}_3$.

joined by \sim (6.279)

 $\hbar^2 2\lambda_1 \lambda_2 \sigma_2 \sigma_1 = \hbar^2 2\lambda_1 \lambda_2 \mathbf{i}_3 \sim \hbar \mathbf{L}_3 = \hbar^2 \lambda_3 \mathbf{i}_3$ $\mathbf{J}_3 = i \mathbf{\sigma}_3 \implies \mathbf{L}_3 = i \mathbf{j}_3 = \hbar \lambda_3 \mathbf{i}_3 = \hbar \lambda_3 \mathbf{i} \mathbf{\sigma}_3,$ $\hbar \hat{L}_3$, whereby we now write

lication, we just write

e resulting angular momentum.³³⁶ tite using (6.279) and the idea (6.263)

uantities transcendental to our intuition.