Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

Note the peculiar difference in angular direction orientation by the dextral definitions

1. from σ_{3} to e_{1} then to $\sigma_{1}(\phi)$ all in the $\boldsymbol{i}_{2}(\phi)$ plane for \odot_{2} (from the pole σ_{3}),
compared to the orientation.
2. first from e_{2} then further to $\sigma_{2}(\phi)$ then to σ_{3} all in the $\boldsymbol{i}_{1}(\phi)$ plane for \odot_{1} (towards the pole). Considering the phase factor $i_{3}=e^{i_{3} / 2 \pi} \Rightarrow \boldsymbol{i}_{2}=\boldsymbol{i}_{3} \boldsymbol{i}_{1}$ to the development angle in the two cases that have the opposite orientations. The rotor oscillators $U_{\psi}:=e^{1 / 2} i_{2} \psi$ and $U_{\psi_{1}}:=e^{1 / i_{1} \psi_{1}}$ do not commute even for $\psi_{1}=-\psi-\pi$, because they are synchronous perpendicular. The co-frequency claim $\psi \sim \pm \omega t \sim \psi_{1}$ tell us $\psi_{1}= \pm \psi+\theta$, with all phases $\forall \theta \in[0,2 \pi[$ constant. The main purpose of the two internal 1-vector directions σ_{1}, σ_{2} is for us free to define in our intuition the external direction $i_{3}:=\sigma_{2} \sigma_{1}$ and by that the external frame direction
$\mathrm{e}_{3}=\sigma_{3}=-i i_{3}=i \sigma_{1} \sigma_{2}$.
This double cover with $U_{2}:=e^{1 / 2 \boldsymbol{i}_{2} \psi}$ and $U_{1}:=e^{1 / i_{2} \psi_{1}}$ for the development parameter ψ is due to the interconnectivity expressed in (6.123),(6.126),(6.130) and (6.145a)-(6.145f) for the even geometric algebra $\mathcal{G}_{0,2}$ of our 3 -space entity $\Psi_{\phi, \psi}$. This double cover makes that we have both rotation oscillators $U_{2}^{2}=e^{i_{2} \psi}$ and $U_{1}^{2}=e^{i_{1} \psi_{1}}$ perpendicular to the i_{3} plane. These are driven in an oscillating around σ_{3} too, by $U_{3}^{2}=e^{i_{3} \phi}$ seen from the surroundings.
In all, we must consider the general unitary quantum uncertainty symmetry factor

$$
\odot=\left\{\theta \rightarrow e^{i \theta} \mid \forall \theta \in \mathbb{R}, \forall i \in \mathcal{Z}\right\},
$$

a circular symmetry in all pqg-2 directions in 3 -space, a sphere symmetry concerning the physical foundation of the meaning with the locality of the even geometric algebra $\mathcal{G}_{0,2}(\mathbb{R})$. The quaternion basis separates this in three fundamental orthogonal directions therefore we consider the three interconnected 1 -spinors $\psi_{1}^{1 / 2}=\rho U_{1}, \psi_{2}^{1 / 2}=\rho U_{2}$ and $\psi_{3}^{1 / 2}=\rho U_{3}$ which make a superposition to $\psi^{1 / 2}=\psi_{3}^{1 / 2}+\psi_{2}^{1 / 2}+\psi_{1}^{1 / 2} \leftrightarrows \hat{Q}=u_{0}+u_{3} i_{3}+u_{2} \boldsymbol{i}_{2}+u_{1} \boldsymbol{i}_{1} \psi^{1 / 2 \dagger}$ that equals the quaternion form, that together with its own reverse $\psi^{3 / 2 \dagger} \leftrightarrow \hat{Q}^{\dagger}$ describe a fully entity. This is an alternative view to what we have seen, that this quaternion can be full described by two independent spinors, e.g. (6.169) from (6.145f): $\hat{Q}=Q_{3} 1+Q_{1} i_{2}$. This is the closest we here will come to an illustration for the intuition of the simplest 3 -space structure below the transcendental quantum barrier of a fundamental entity Ψ_{3}
6.4.9.5. External and Internal Directions of an Entity in 3 space When we speak of an object direction for an entity, we mean an external quality. For one specific entity, we presume only one external direction. In 3 -space this can be expressed as a 1 -vector joint by its dual bivector The information to the external can be given by a subton whose angular momentum gives the direction, e.g., $\sigma_{3} \sim \mathcal{L}_{3}^{+}$, Anyway, internal in the locality of entity Ψ_{3} we are forced to look at the extension of three spatial directions.
The best way to do this is by a geometric algebra basis as expressed in (6.119), which has an interconnectivity structure simply expressed in (6.126) and more detailed in section 6.4 .3 with the even algebra quaternions.
The foundation of this problem is intuited in Figure 6.21
Complementary to the angular circular wave oscillation we will now look at the angular momentum direction operators. The possible internal variable operator for the angular momentum components \mathbf{j}_{k} re illustrated as 1 -vectors operators The object illustration presumes $\left|\mathbf{j}_{k}\right| \sim 1 / 2$.

6.5. The Angular Momentum in 3 Space

6.5.1. One Quantum of Angular Momentum

From the review in $\S 6.4 .9 .1$, we conclude the fundamental quantum is the excitation of a circular oscillation with an autonomous angular momentum of the quantity one ($\hbar=1$). The fundamental quality of this is a primary quality of second grade (pqg-2), as a unit plane pseudoscalar \boldsymbol{i} in an oscillation plane or a unit bivector in a space of higher grades, e.g., 3 -space This principle was first expressed in Kepler's second law as constant chronometric angular areas The classical view is that angular momentum is represented by a pqg-1-vector direction as \vec{L}_{3}^{+}(6.227). Here with quantum one $\left|\vec{L}_{3}^{+}\right|=\hbar=1$. To intuit this in a standard orthogonal 1-vecto basis $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ for an $\mathcal{3}$-space entity we choose $\sigma_{3}=\vec{L}_{3}^{+}$. Dual to this in the even $\mathcal{G}_{3,0}^{+} \sim \mathcal{G}_{0,2}$ Geometric Algebra this is expressed as (6.235) $\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}=\boldsymbol{i} \vec{L}_{3}^{+}$, that's a transversal unit bivector defined by $\boldsymbol{i}_{3}:=\sigma_{2} \sigma_{1}$, as the plane pseudoscalar unit for an angular momentum quantum.
6.5.1.1. 1-vector Angular Momentum

From classical physics, we have that the angular momentum as a 1 -vector can be written as (3.62)

$$
\text { (6.255) } \quad \vec{L}=\vec{r} \times \vec{p}=\mathbf{q} \times \mathbf{p}
$$

Where the position 1-vector from a center by position coordinate in the frame $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ is
$\vec{r}=\mathrm{q}=q_{1} \sigma_{1}+q_{2} \sigma_{2}+q_{3} \sigma_{3}$,
and the directional momentum 1-vector quantity with components along $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ is
$\vec{p}=\mathbf{p}=p_{1} \sigma_{1}+p_{2} \sigma_{2}+p_{3} \sigma_{3}$
where both the coordinates $q_{k} \in \mathbb{R}$ and components $p_{k} \in \mathbb{R}$ for $k=1,2,3$ are real field scalars.
Here by the angular momentum 1-vector can be expressed from this basis $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$
$\vec{L}=\lambda_{1} \sigma_{1}+\lambda_{2} \sigma_{2}+\lambda_{3} \sigma_{3}$,
Where the component factors are the real determining scalars ${ }^{33}$
(6.259) $\lambda_{1}=\left(q_{2} p_{3}-q_{3} p_{2}\right) \in \mathbb{R}$,
(6.260) $\lambda_{2}=\left(q_{3} p_{1}-q_{1} p_{3}\right) \in \mathbb{R}$,
(6.261) $\quad \lambda_{3}=\left(q_{1} p_{2}-q_{2} p_{1}\right) \in \mathbb{R}$.

6.5.1.2. The Bivector Angular Momentum

The angular momentum is expressed as a transversal bivector by the outer product (5.58)
(6.262) $\mathrm{L}=\boldsymbol{i} \vec{L}=\boldsymbol{i}(\mathrm{q} \times \mathrm{p})=-\mathrm{q} \wedge \mathrm{p}=\mathrm{p} \wedge \mathrm{q}=\frac{1}{2}(\mathrm{pq}-\mathrm{qp})=\boldsymbol{i}(\vec{r} \times \vec{p})=-\vec{r} \wedge \vec{p}=-\frac{1}{2}(\vec{r} \vec{p}-\vec{p} \vec{r})$

$$
=\frac{1}{2}\left(\left(p_{1} \sigma_{1}+p_{2} \sigma_{2}+p_{3} \sigma_{3}\right)\left(q_{1} \sigma_{1}+q_{2} \sigma_{2}+q_{3} \sigma_{3}\right)-\left(q_{1} \sigma_{1}+q_{2} \sigma_{2}+q_{3} \sigma_{3}\right)\left(p_{1} \sigma_{1}+p_{2} \sigma_{2}+p_{3} \sigma_{3}\right)\right)
$$

$$
=\left(q_{2} p_{3}-q_{3} p_{2}\right) \sigma_{3} \sigma_{2}+\left(q_{3} p_{1}-q_{1} p_{3}\right) \sigma_{1} \sigma_{3}+\left(q_{1} p_{2}-q_{2} p_{1}\right) \sigma_{2} \sigma_{1}
$$

Hence due to (6.123)
(6.263) $\mathrm{L}=\lambda_{1} i_{1}+\lambda_{2} i_{2}+\lambda_{3} i_{3}=i\left(\lambda_{1} \sigma_{1}+\lambda_{2} \sigma_{2}+\lambda_{3} \sigma_{3}\right)=i \vec{L}=\mathrm{p} \wedge \mathrm{q}=-\mathrm{q} \wedge \mathrm{p}=\vec{p} \wedge \vec{r}=-\vec{r} \wedge \vec{p}$

In quantum mechanics (QM) $\hbar=1$ we express the momentum operator (3.3), (3.68) as

$$
\hat{p}_{j}=-i \hbar \frac{\partial}{\partial q_{j}}, \quad \text { with } j=1,2,3
$$

for the components, and further expressed as a 1 -vector momentum operato

$$
\text { (6.265) } \quad \overrightarrow{\hat{p}}=-i \hbar \boldsymbol{\nabla}, \quad \text { where } \quad \boldsymbol{\nabla}=\sum_{j} \frac{\partial}{\partial q_{j}}=\frac{\partial}{\partial q_{1}}+\frac{\partial}{\partial q_{2}}+\frac{\partial}{\partial q_{3}}
$$

express the traditional 1-vector gradient operator $\boldsymbol{\nabla}$ (summed from three directions)
${ }^{331}$ The reader may refer to chapter I. section 3.1.7, 3.1.8 for a classical view, and 3.1.9, 3.2 for a quantum mechanical view.

| © Jens Erfurt Andresen, M.Sc. NBI-UCPH, | $-275-$ | Volume I, - Edition 2-2020-22, - Revision 6, | December 2022 |
| :---: | :---: | :---: | :---: | :---: |

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

