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(6.240) ( ) =  ( ) =   e =  e  
Here we recall once again that the angular development is  = , where we just choose =1 
as auto-norm. We consider a double-created orthogonal quantum excitation of two rotations: 
The one angular wavefunction is the rotation oscillating function  (we involve 3 circle group) 

(6.241) =         = |+1 =                  ½           ½ = ½ . 
The other rotation oscillator that is in a plane orthogonal to this   (we involve 2  circle group) 

(6.242) =         = |+1 =                  ½           ½ = ½ . 
These two rotation oscillators cannot combine directly due to, 
that there do not commute   as described325 in 
§ 6.3.5.2,  shown in Figure 6.14. Instead, we use the canonical  
the sandwich method with (6.202) for a resulting 2-rotor product 
of two 1-rotors 

(6.243) = ,  = ½ ½ , 
and from this the full rotation of any 1-vector x 

(6.244)   
, x = x = x 

             =  ½ ½ x ½ ½

             =  ½BB( , )x ½BB( , ) =  B( , )x =   ( , )x.
 

We display the two orthogonal rotations in Figure 6.18 as 
snapshots of the circle oscillators  ½ ,  ½ . 
The rule here for the basis vector (0) = e  is to be the  
start node n , = e  for the oscillations = 0, = 0 
(compare Figure 6.17, 2-3, for the Euler angles, where 
we choose the orthogonality by setting = 2 ). 
The node n , = = e  is the intersection between 
the two orthogonal oscillator planes in the entity , , 
and those follow its autonomous frame { , , }. 
The intersection between these circle oscillator planes is .  
We use the even ,  algebra for these planes in -space. 
The resulting variable bivector argument in (6.244) is 

(6.245) B ( , ) =  + ( )   =  + e , 
also represented by its joined dual 1-vector argument 

(6.246) r( , )  =  + ( ) = + e , 
that has an oscillating direction in the sphere, which  
normalized unit 1-vector direction can be expressed 

(6.247) u( , ) = r( , ) 2+ 2 , see this in Figure 6.19. 
As we have chosen to know, the angular phase ,  ~ ±  
is developing monotonously. This picture with an oscil-
lating 1-vector seems weird though the result is periodic. 
Anyway, we will try to display it for the intuition. 
For the entity ,  to give meaning we must presume that 
the angular frequency energy =1 autonomously is the 
same for both  and . In that, we write = ± +   
and = ± + , (arbitrary start relative to e ) we can  
set  =   , and write = ± +   ~  ±  +  
for any angular development internal in , . 

Figure 6.18  The two orthogonal circle  
oscillators in the plane directions  

 =   and   =  with 
the azimuth angular development parameters 

 and from the polar angle = 2. 
( , ) both starting from e = (0) 
The two oscillators are shown as unitary 
circular rings in an uneven parity inversion 
contradiction (red-blue) and  
(magenta-blue) just as in Figure 3.8. 

Figure 6.19  An arbitrary intuition of  
the two perpendicular circle oscillators. 
The outermost oscillator in (6.244) drives 
the inner oscillator plane synchronously 
around =  ~ ± . 
The angular direction axis ( , ) form a 
8 curve on the unit sphere for every 2  
turn in the two driving oscillators. – 
This example starts at e  and shows  
 (35°)= n °, °    (35°, 35°). 

– 6.4.9. Oscillations in -space  –  6.4.9.4 Breaking the Spherical Symmetry into One Direction –   
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In a fictive snap = 0 where we set =  ~ ± , we can intuit the angular development as 
displayed in Figure 6.19, where the angular point on the unit sphere is pointed out by the unit 
1-vector (6.247)  uu( , ) describing a 8 curve on the sphere surface. 
This angular surface curve has an opposite placed odd parity 1-vector u( , ) describing a 
8 curve too for the oscillation. The reader should note that  u( , ) = u(0,0) = ,  , 
so, for every cycle in the resulting oscillation, the  numbered phase; the pointing axis u passes 
the x in the 8 bows two times, one in each branch for even versus odd  number, the same for 8. 
This oversimplified snap synchronised angular parameter =  example used for (6.201) gives 

(6.248) = + ½ cos , = , = 0, = + ½ sin . 
This makes  = 0 disappear and we get the versor quaternion 2-rotor 

(6.249) = = + ( ) + ( ) + =  ½ (cos + sin ) ( ) cos  
Compare this to Figure 6.15 and Figure 6.16, and let the autonomy  
stay on the plane  in relation to external frame {e , ee , ee }. 
The fictive snap of the two-parameter synchronised oscillation  
phase = = =  is spoiled by the symmetry factors    
for  [0,2 [  in all directions    from the unitary  
circle group (1), e.g.   2 = : (1)   . 
This illustrates the traditional uncertainty of quantum mechanics. 
Here in -space, we have three orthogonal directions 1, 2, 3 
of 1circular symmetry. We only need to multiply two of these to 
make a full spherical symmetry 2 as illustrated in Figure 6.20. 
This auto unit sphere for entity  is a priori the principal 
transcendental range of a locality in -space. 
We remember a radial probability distribution of the 
one quantum circle oscillator 

(6.250) 2 ( ) = 2     for    0,   with 2 ( ) = 1 
relative to the entity autonomy unit radius = 1 for its 
maximum, and the polar radial mean  = 2  for these 1-rotor oscillators.330 
We remember here that due to the odd density magnitude function (3.143) dependent on   
for the central contradiction from the principle of Newton's third law expressed by: 

( ) + ( ) = 0, we get a factor 2 in (3.144) from the balanced radial dependent  0, which 
is illustrated in Figure 3.5. In all planes, the distribution factor is 2 ( ), where  represent all 
arbitrary plane directions in -space. This is the foundation of what in the tradition is called the 
Heisenberg uncertainty for an information signal from an entity  in quantum mechanics. 

6.4.9.4. Breaking the Spherical Symmetry into One Direction 
To be precise here in our example we are preoccupied with the entity direction  = , which 
possesses the uncertain symmetry factor  from the (1) group 3=  [0,2 [ . 
This makes a phase angle shift = ½  indifferent to the start direction of the rotation axis 

(6.251) = ½   = ½ .  We use = ½   and have as (6.123)  = . 
Due to this the oscillator plane that is parallel to the polar axis  can as well as (6.240) -  
be represented by the 1-rotor = ½ ,  driven around  by 

(6.252) ( ) =  ( ) =  e . 
 

330 Consult section 3.3.5 for an external estimate of the size of this radius, formula (3.181) and (3.188) says  =1. 

Figure 6.20, The unit sphere for the  
hide what is going on inside. The even 
algebra ,  has a structure for the versor 
oscillations that isomorph to the special 
unitary group (2) in  space, that  
we cannot illustrate as   symmetry. 
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