Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

Figure 6.18 The two orthogonal circle oscillators in the plane directions $i_{3} \equiv \sigma_{2} \sigma_{1}=i \sigma_{3}$ and $i_{2} \equiv \sigma_{1} \sigma_{3}=i \sigma_{2}$ with the azimuth angular development parameters ϕ and from the polar angle $\psi=\theta-\pi / 2$. (ϕ, ψ) both starting from $e_{1}=\boldsymbol{\sigma}_{1}(0)$ The two oscillators are shown as unitary circular rings in an uneven parity inversion contradiction (red-blue) and
(magenta-blue) just as in Figure 3.8.

Figure 6.19 An arbitrary intuition of the two perpendicular circle oscillators. The outermost oscillator in (6.244) drives the inner oscillator plane synchronously around $\psi=\phi \sim \pm \omega t$. The angular direction axis $\mathbf{u}(\phi, \psi)$ form a 8 curve on the unit sphere for every 2π furn in the two driving oscillators. This example starts at e_{1} and show $\sigma_{1}\left(35^{\circ}\right)=n_{35^{5}, 0^{\circ}} \Rightarrow u\left(35^{\circ}, 35^{\circ}\right)$.
6.4.9. Oscillations in 3 -space - 6.4.9.4 Breaking the Spherical Symmetry into One Direction-

In a fictive snap $\theta_{0}=0$ where we set $\psi=\phi \sim \pm \omega t$, we can intuit the angular development as displayed in Figure 6.19, where the angular point on the unit sphere is pointed out by the unit 1 -vector (6.247) u(ϕ, ψ) describing a 8 curve on the sphere surface
This angular surface curve has an opposite placed odd parity 1 -vector $-u(\phi, \psi)$ describing a 8 curve too for the oscillation. The reader should note that $\mathrm{u}(n \pi, n \pi)=\mathrm{u}(0,0)=\sigma_{1}, n \in \mathbb{Z}$, so, for every cycle in the resulting oscillation, the n numbered phase; the pointing axis u passes the x in the 8 bows two times, one in each branch for even versus odd n number, the same for 8 . This oversimplified snap synchronised angular parameter $\psi=\phi$ example used for (6.201) gives (6.248) $\quad u_{0}=+\sqrt{1 / 2} \cos \phi, \quad u_{1}=-u_{0}, \quad u_{2}=0, \quad u_{3}=+\sqrt{1 / 2} \sin \phi$.

This makes $u_{2} \boldsymbol{i}_{2}=0$ disappear and we get the versor quaternion 2-rotor

$$
\text { (6.249) } \quad \hat{Q}=U=u_{0}+u_{1} \boldsymbol{i}_{1}(\phi)+u_{2} \boldsymbol{i}_{2}(\phi)+u_{3} \boldsymbol{i}_{3}=\sqrt{1 / 2}\left(\left(\cos \phi+\boldsymbol{i}_{3} \sin \phi\right)-\boldsymbol{i}_{1}(\phi) \cos \phi\right)
$$

Compare this to Figure 6.15 and Figure 6.16, and let the autonomy $\sigma_{3} \sim L_{3}^{+}$ stay on the plane \boldsymbol{i}_{2} in relation to external frame $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$. The fictive snap of the two-parameter synchronised oscillation phase $\theta=\theta_{1}=\theta_{2}=\theta_{3}$ is spoiled by the symmetry factors $e^{i \theta}$ for $\forall \theta \in[0,2 \pi[$ in all directions $\forall i \in \mathcal{Z}$ - from the unitary circle group $U(1)$, e.g. $\odot_{2}=\left\{U_{\theta}: \theta \rightarrow e^{i_{2} \theta} \in U(1) \mid \forall \theta \in \mathbb{R}\right\}$. This illustrates the traditional uncertainty of quantum mechanics. Here in $\mathfrak{3}$-space, we have three orthogonal directions $\odot_{1}, \odot_{2}, \odot_{3}$ of S^{1} circular symmetry. We only need to multiply two of these to make a full spherical symmetry S^{2} as illustrated in Figure 6.20. This auto unit sphere for entity Ψ_{3} is a priori the principal transcendental range of a locality in 3-space.
We remember a radial probability distribution of the one quantum circle oscillator relative to the entity autonomy unit radius $\rho=1$ for its

Figure 6.20, The unit sphere for the S^{2} hide what is going on inside. The even algebra $\mathcal{G}_{0,2}$ has a structure for the versor oscillations that isomorph to the special unitary group $S U(2)$ in 3 space, that we cannot illustrate as S^{3} symmetry we cannot illustrate as S^{3} symm
maximum, and the polar radial mean $\int_{0}^{\infty} \rho e^{-\frac{1}{2} \rho^{2}} d \rho=\sqrt{\pi / 2}$ for these 1-rotor oscillators. ${ }^{330}$ We remember here that due to the odd density magnitude function (3.143) dependent on $\forall \rho \in \mathbb{R}$ for the central contradiction from the principle of Newton's third law expressed by: $\tilde{r}(\rho)+\tilde{r}(-\rho)=0$, we get a factor 2 in (3.144) from the balanced radial dependent $\forall \rho \geq 0$, which is illustrated in Figure 3.5. In all planes, the distribution factor is $e^{i \theta} 2 \tilde{r}(\rho)$, where i represent all arbitrary plane directions in 3 -space. This is the foundation of what in the tradition is called the Heisenberg uncertainty for an information signal from an entity Ψ_{3} in quantum mechanics
6.4.9.4. Breaking the Spherical Symmetry into One Direction

To be precise here in our example we are preoccupied with the entity direction $\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}$, which possesses the uncertain symmetry factor $e^{i_{3} \theta_{3}}$ from the $U(1)$ group $\odot_{i_{3}}=\left\{\theta \rightarrow e^{i_{3} \theta} \mid \forall \theta \in[0,2 \pi[\}\right.$. This makes a phase angle shift $\theta=\theta_{3}-1 / 2 \pi$ indifferent to the start direction of the rotation axis

$$
\text { (6.251) } \quad \boldsymbol{\sigma}_{1}=e^{-\boldsymbol{i}_{3} \frac{1}{2} \pi} \boldsymbol{\sigma}_{2} \Leftrightarrow \boldsymbol{i}_{1}=e^{-\boldsymbol{i}_{3} \frac{1}{2} \pi} \boldsymbol{i}_{2} . \text { We use }-\boldsymbol{i}_{3}=e^{-\boldsymbol{i}_{3} \frac{1}{2} \pi} \text { and have as (6.123) } \boldsymbol{i}_{1}=-\boldsymbol{i}_{3} \boldsymbol{i}_{2}
$$

Due to this the oscillator plane that is parallel to the polar axis σ_{3} can as well as (6.240) be represented by the 1 -rotor $U_{\psi_{1}}^{\dagger}=e^{-1 / 2 i_{1} \psi_{1}}$, driven around σ_{3} by
(6.252) $\quad \boldsymbol{i}_{1}(\phi)=\boldsymbol{i} \sigma_{1}(\phi)=e^{i_{3} \phi} \boldsymbol{i e}_{1}$
${ }^{330}$ Consult section 3.3.5 for an external estimate of the size of this radius, formula (3.181) and (3.188) says $\frac{1 C}{\omega} \rightarrow \rho=1$.
© Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-273-\quad$ Volume I, - Edition 2-2020-22, - Revision 6,

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

