Restricted to brief peruse for research, reviews, or scholarry an	iary 515,_	0
– II The Geometry of Physics – 6. The Natural Space of Physics – 6.4. The Geometric Clifford Algebra –	GeR	
	õn O	
6.4.9. Oscillations in 3-space	ne	
The general claim in this book (concerning chapter I.) for an <i>entity</i> Ψ to exist is, that we demand it to contain at least one <i>quantum</i> of some frequency energy $\hbar\omega$.	Research on the a priori of Physics Geometric Critique of Pure Mathematical Reasoning	
6.4.9.1. Review of the Quantum Mechanical Circle Oscillator	$\bigcirc \bigcirc$	
In section 3.3 we introduced the plane excited circle oscillator I. (3.148) and (3.163)	n rit	
(6.225) $\psi_{\pm}^{\circ} = a_{\odot\pm}^{\dagger} 0,0\rangle = 1,\pm1\rangle = 2\tilde{r}(\rho) \odot e^{\pm i\omega t},$	$\vec{\mathbf{O}}$	
where \odot is the transversal plane symmetry factor with $ e^{i\theta} = \odot = 1$, and the radial	n	
distribution is auto-normalized $\langle 1, \pm 1 1, \pm 1 \rangle = \int_0^\infty (2 \tilde{r}(\rho))^2 e^{\pm i\phi} e^{\pm i\phi} d\rho = \int_0^\infty \frac{4}{\sqrt{\pi}} \rho^2 e^{-\rho^2} d\rho = 1.$.0	
This is an eigenvalue solution to the angular momentum quantum operator equation (3.167)		
(6.226) $\hat{L}_3 1,\pm1\rangle \doteq \pm 1\hbar 1,\pm1\rangle$.	n _o n	
Where the angular momentum operator \hat{L}_3 (3.103) govern a rotating state (6.225) in a plane that is transversal to a 1-vector \vec{L}_3^+ <i>direction</i> for one quantum $ \vec{L}_3^+ = \hbar = 1$ of the angular momentum, in	re	
an analogy with the classical angular momentum 1-vector as (3.171)	210	
(6.227) $\vec{L}_3^+ = \hat{\vec{\omega}} = \vec{n} = \mathbf{n} \sim \hat{L}_3 \sim \hat{\vec{1}},$ One Quantum. ³²⁸	la	
(0.227) $L_3 = \omega = n = n$ $\omega = L_3$ $\omega = 1$, One Quantum . For simplification, we use the autonomous angular frequency energy $\omega = 1$ so that the phase	th	
angle (e.g. $\varphi, \phi, \psi \sim \omega t$) is the same as the development parameter internal in the <i>entity</i> .	en l	
Removing the radial and the circular distributing factors $2\tilde{r}(\rho)$ · we have a pure unitary oscillator	1	
(6.228) $\hat{\psi}_{\pm} = \pm 1\rangle = e^{\pm i\psi}$ or $\hat{\phi}_{\pm} = \pm 1\rangle = e^{\pm i\phi}$,	O	
where there is no specified physical <i>direction</i> in a 3-space. (Descartes: No Extension.)	f	
In opposition to this traditional view, we led the transversal angular momentum <i>quantum</i> represent the angular notation plane direction unit.	P	
the <i>quality of direction</i> by the unit 1-vector n normal to the angular rotation plane <i>direction</i> unit $i_{\perp n} = i_n = i_n$, whence we define a frame <i>direction</i> , e.g. $\sigma_3 := n$, whereby we have	h	
the transversal bivector plane <i>direction</i> $\mathbf{i}_3 = \sigma_2 \sigma_1 = \mathbf{i} \sigma_3 = \mathbf{i}_1$ for the angular rotation plane.	No.	
By this <i>primary quality of direction</i> , we rewrite (6.228)	S S	
(6.229) $\hat{\psi}_{\pm i_3} = \pm 1\rangle_3 = e^{\pm i_3 \psi} = \hat{\psi}_{\pm \sigma_3} = e^{\pm i\sigma_3 \psi}.$	Physics Reasoning	
We know from the definitions, that this 1-rotor exists in the plane <i>direction</i> spanned by $\{i_3\}$.	00 00	
This quantum oscillating rotor possesses an angular momentum <i>direction</i> from which we endow		
the angular momentum quantum operator idea for \hat{L}_3 with a bivector <i>direction</i>		
(6.230) $\mathbf{L}_3 = \hbar \lambda_3 \mathbf{i}_3 = \hbar \lambda_3 \mathbf{i}_3$, as a transversal bivector angular momentum operator,		
where $\lambda_3 \in \mathbb{R}$ is a <i>real scalar operator</i> span from the supporting <i>direction</i> $i_3 = i\sigma_3$. From this, we now rewrite the eigenvalue equation (6.226) for the angular momentum		
(6.231) $(\hbar\lambda_3 \mathbf{i}_3) \pm 1\rangle_3 \doteq \pm 1\hbar\mathbf{i}_3 \pm 1\rangle_3$		
of <i>one</i> free subton state that defines an eigenvalue <i>direction</i> $\mathbf{i}_3 = \mathbf{i} \boldsymbol{\sigma}_3$ for the operator $\mathbf{L}_3 = \hbar \lambda_3 \mathbf{i}_3$.		
The <i>direction</i> bivector eigenvalue just replaces the traditional complex number eigenvalue.		
Consider the fact that $\mathbf{i}_3 = e^{\mathbf{i}_3 \pi/2}$ operating by \mathbf{i}_3 rotate by a phase shift $\pi/2$ in its own plane		
<i>direction</i> , then $\mathbf{i}_3 \pm 1\rangle_3 = e^{\mathbf{i}_3 \pi/2} e^{\pm \mathbf{i}_3 \psi} = e^{\pm \mathbf{i}_3 \varphi}$, where $\pm \varphi = (\pi/2 \pm \psi)$.		
Whence we have the <i>real scalar operator</i> angular momentum eigenvalue equation		
$(6.232) \qquad (\hbar\lambda_3 \mathbf{i}_3) e^{\pm \mathbf{i}_3 \psi} \doteq \pm 1\hbar \mathbf{i}_3 e^{\pm \mathbf{i}_3 \psi} \implies \lambda_3 e^{\pm \mathbf{i}_3 \varphi} = \pm 1 e^{\pm \mathbf{i}_3 \varphi} \implies e^{\mp \mathbf{i}_3 \varphi} \lambda_3 e^{\pm \mathbf{i}_3 \varphi} = \pm 1.$		
The <i>direction</i> is now given in the wavefunction $\mathbf{i}_3(e^{\pm \mathbf{i}_3\psi}) = (e^{\pm \mathbf{i}_3\psi})\mathbf{i}_3$ by $\mathbf{i}_3 = \mathbf{i}\mathbf{\sigma}_3$ and too		
implicit in the plane exponential function $e^{\pm i_3 \psi}$ direction. (an analogy to [18] (8.25) p.271.)		
From (6.232) we see that $ \langle \lambda_3 \rangle = 1$. Do we count $\hbar = 1^{329}$ we simply get $\lambda_3 = \pm 1$ and by that		
just $\pm i_3 e^{\pm i_3 \psi} = \pm 1 i_3 e^{\pm i_3 \psi}$ as a tautology for a free subton excitation. This subton excitation performs a free (external) angular momentum <i>direction</i> .		
	ens Erfurt Andresen dition 2, © 2020-22	
²⁸ Counting the cyclical <i>direction</i> with the causal counting operator $\hat{\vec{1}}$ we get the causal <i>direction</i> like angular momentum.	S	
\hbar^{29} \hbar^{-1} just means as we know, that energy and frequency is the same <i>quality</i> measured by the same <i>quantity</i> unit.	ň	
© Jens Erfurt Andresen, M.Sc. Physics, Denmark – 270 – Research on the a priori of Physics – December 2022	, [,] -	(
	L	

For quotation reference use: ISBN-13: 978-8797246931

- 6.4.9. Oscillations in 3-space - 6.4.9.3 Intuition of Two Perpendicular Exited Circle Oscillators Inside one Entity -

This is the foundation to create and by that define a frame *direction* for physical *entities*. When we use the 1-vector *direction* $\vec{L}_{3}^{+} = \hbar \sigma_{3}$, we have the transversal bivector $\mathbf{L}_{3}^{+}/\hbar = \mathbf{i}_{3} = \mathbf{i}\sigma_{3}$, representing the oscillating angular momentum with the *direction quality of one quantum*.

6.4.9.2. Multi Excitations of Angular Momentum Internal in One Entity When two angular momentum excitations as components of an *entity* exist in different planes, we know from § 6.3.5.2 that their product does not commute. Therefore, we use the canonical sandwich method by half-angle rotor operations as indicated (6.164)-(6.166) $\psi_{k+}^{\frac{1}{2}} = U_{\phi_k} = e^{+\frac{1}{2}i_k\phi_k}.$ (6.233)

The question now is, will this affect the angular momentum operator components \sim (6.230) $\mathbf{L}_{k} = \lambda_{k} \mathbf{i}_{k} = \lambda_{k} \mathbf{i} \boldsymbol{\sigma}_{k}.$ (6.234)

A guess could be that $\lambda_{\nu} \rightarrow \sim \frac{1}{2}$. We will qualify this for an *entity* $\Psi_{1/2}$ below in section 6.5.

6.4.9.3. Intuition of Two Perpendicular Exited Circle Oscillators Inside one Entity Presuming an *entity* Ψ_3 in 3-space we demand at least one *quantum* excitation of angular momentum. We imagine a local frame by $\sigma_3 \sim \vec{L}_3^+$, i.e., we choose a local *direction* for Ψ_3 in our intuition, which is represented by the plane circular oscillator of the unitary circle group $\bigcirc_3 = \{ U_{\theta} : \theta \to e^{i_3 \theta} \in U(1) \mid \forall \theta \in \mathbb{R} \}$ that exists in the even geometric algebra $\mathcal{G}_{0,2}(\mathbb{R})$ for the \Im -space, As (6.31) and (6.119) $\mathbf{i}_3 = \mathbf{i} \boldsymbol{\sigma}_3$ we have that the chiral volume pseudoscalar \mathbf{i} turn the angular momentum 1-vector *direction* $\sigma_3 = \vec{L}_3^+/\hbar$ into its dual transversal *bivector*, that is the true internal representative for the free *direction for one quantum of angular momentum* (\hbar =1),

 $i_3 = i\sigma_3 = i\vec{L}_3^+/\hbar = L_3^+/\hbar.$ (6.235)

We remember that $i_3 = \sigma_2 \sigma_1$ where we have both σ_2 and σ_1 is perpendicular to σ_3 , and further that their transversal plane bivectors \mathbf{i}_3 , \mathbf{i}_2 and \mathbf{i}_1 are mutual perpendicular. We choose the orthonormal 1-vector dextral basis $\{\sigma_1, \sigma_2, \sigma_3\}$ as the autonomous frame for our fundamental *entity* Ψ_3 . Implied from this we have its autonomous quaternion basis $\{1, i_1, i_2, i_3\}$. With this knowledge we compare this to the perpendicular unitary 1-rotors $U_{\phi} \coloneqq e^{\frac{1}{2}i_3\phi}$ and $U_{\psi} \coloneqq e^{\frac{1}{2}i_2\psi}$ in the *directions* i_3 and i_2 , which was essential for the spherical coordinates in section 6.4.8. This unitary 1-rotor $U_{\phi} \coloneqq e^{\frac{1}{2}i_3\phi}$ oscillation manages the plane *direction* i_3 , whereby all 1-vectors rotates along this i_3 plane. We now choose to rotate the internal autonomous frame $\{\sigma_i\}$ relative to an external dextral frame $\{e_i\}$ that's fixed to the surroundings. This plane rotation oscillation is performed by the 1-rotor U_{ϕ} using the canonical form (6.70)

(6.236)
$$\boldsymbol{\sigma}_j = \boldsymbol{U}_{\boldsymbol{\phi}} \mathbf{e}_j \boldsymbol{U}_{\boldsymbol{\phi}}^{\dagger} = \underline{\mathcal{R}}_{\boldsymbol{\phi}} \mathbf{e}_j \boldsymbol{U}_{\boldsymbol{\phi}}^{\dagger}$$

Because the 1-rotor is in the i_3 plane we have $e_3 = \sigma_3$ as the steady *direction* for our *entity* Ψ_3 . When we e.g., take the start reference from a fixed external *direction* 1-vector \mathbf{e}_1 , we rotate $\boldsymbol{\sigma}_1 = \boldsymbol{\sigma}_1(\boldsymbol{\phi}) = \underline{\mathcal{R}}_{\boldsymbol{\phi}} \mathbf{e}_1 = \underline{U}_{\boldsymbol{\phi}} \mathbf{e}_1 \underline{U}_{\boldsymbol{\phi}}^{\dagger} = \underline{U}_{\boldsymbol{\phi}} \underline{U}_{\boldsymbol{\phi}} \mathbf{e}_1 = \underline{U}_{\boldsymbol{\phi}}^2 \mathbf{e}_1 = e^{i_3 \phi} \mathbf{e}_1.$ (6.237)Then seen autonomous from the *entity* Ψ_3 frame $\{\sigma_i\}$ the surrounding frame is rotating reversed $\mathbf{e}_1(\boldsymbol{\phi}) = \boldsymbol{U}_{\boldsymbol{\phi}}^{\dagger} \boldsymbol{\sigma}_1 \boldsymbol{U}_{\boldsymbol{\phi}} = e^{-\boldsymbol{i}_3 \boldsymbol{\phi}} \boldsymbol{\sigma}_1,$ and $\mathbf{e}_2(\phi) = U_{\phi}^{\dagger} \mathbf{\sigma}_2 U_{\phi} = e^{-i_3 \phi} \mathbf{\sigma}_2$ (6.238)Seen from the external lab world this frame $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is fixed. For the orthogonal 1-rotor circle oscillation $U_{ij} = e^{\frac{1}{2}i_2\psi}$ around the perpendicular 1-vector axis σ_2 with the angular momentum quantum $\sigma_2 = \vec{L}_2^+/\hbar$ in the 1-vector *direction* $\mathbf{\sigma}_2 = \mathbf{\sigma}_2(\phi) = \mathcal{R}_{\phi} \mathbf{e}_2 = e^{\mathbf{i}_3 \phi} \mathbf{e}_2 \qquad = \mathbf{i}_3 e^{\mathbf{i}_3 \phi} \mathbf{e}_1.$ (6.239) (note $\sigma_2 = \mathbf{i}_3 \sigma_1 \Leftrightarrow \mathbf{e}_2 = \mathbf{i}_3 \mathbf{e}_1$).

And the dual transversal angular momentum *direction* bivector for this $L_2^+/\hbar = i_2 = i\sigma_2$. Then we designed the external picture so that this plane for angular momentum has its direction rotating in the following oscillating way

©	Jens Erfurt Andres	en, M.Sc. NBI-U	ЈСРН,	- 271 -
			0	TODAT 10 0

For quotation reference use: ISBN-13: 978-879724693

(a unit bivector).