

6.4.9. Oscillations in 3 -space

The general claim in this book (concerning chapter I.) for an entity Ψ to exist is, that we demand it to contain at least one quantum of some frequency energy $\hbar \omega$.

64.9.1. Review of the Quantum Mechanical Circle Oscillato

In section 3.3 we introduced the plane excited circle oscillator I. (3.148) and (3.163)

6.225)

 $\psi_{ \pm}^{\odot}=a_{\odot \pm}^{\dagger}|0,0\rangle=|1, \pm 1\rangle=2 \tilde{r}(\rho) \odot e^{ \pm i \omega t}$where \odot is the transversal plane symmetry factor with $\left|e^{i \theta}\right|=|\odot|=1$, and the radia distribution is auto-normalized $\langle 1, \pm 1 \mid 1, \pm 1\rangle=\int_{0}^{\infty}(2 \tilde{r}(\rho))^{2} e^{ \pm i \phi} e^{\mp i \phi} d \rho=\int_{0}^{\infty} \frac{4}{\sqrt{\pi}} \rho^{2} e^{-\rho^{2}} d \rho=1$ This is an eigenvalue solution to the angular momentum quantum operator equation (3.167) $\hat{L}_{3}|1, \pm 1\rangle \doteq \pm 1 \hbar|1, \pm 1\rangle$.
Where the angular momentum operator \hat{L}_{3} (3.103) govern a rotating state (6.225) in a plane that is transversal to a 1-vector \vec{L}_{3}^{+}direction for one quantum $\left|\vec{L}_{3}^{+}\right|=\hbar=1$ of the angular momentum, in an analogy with the classical angular momentum 1-vector as (3.171)

$$
\vec{L}_{3}^{+}=\widehat{\vec{\omega}}=\vec{n}=\mathbf{n} \sim \hat{L}_{3} \quad \sim \hat{\overrightarrow{1}}, \quad \text { One Quantum. }{ }^{328}
$$

For simplification, we use the autonomous angular frequency energy $\omega=1$ so that the phase angle (e.g. $\varphi, \phi, \psi \sim \omega t$) is the same as the development parameter internal in the entity. Removing the radial and the circular distributing factors $2 \tilde{r}(\rho) \odot$ we have a pure unitary oscillator

$$
\hat{\psi}_{ \pm}=| \pm 1\rangle=e^{ \pm i \psi} \quad \text { or } \quad \hat{\phi}_{ \pm}=| \pm 1\rangle=e^{ \pm i \phi}
$$

where there is no specified physical direction in a 3-space. (Descartes: No Extension.) In opposition to this traditional view, we led the transversal angular momentum quantum represent the quality of direction by the unit 1 -vector n normal to the angular rotation plane direction unit $\boldsymbol{i}_{1 \mathbf{n}}=\boldsymbol{i}_{\mathbf{n}}=\boldsymbol{i n}$, whence we define a frame direction, e.g. $\sigma_{3}:=\mathrm{n}$, whereby we have
the transversal bivector plane direction $\boldsymbol{i}_{3}=\sigma_{2} \boldsymbol{\sigma}_{1}=\boldsymbol{i} \sigma_{3}=\boldsymbol{i n}$ for the angular rotation plane
By this primary quality of direction, we rewrite (6.228)
$\hat{\psi}_{ \pm i_{3}}=| \pm 1\rangle_{3}=e^{ \pm i_{3} \psi}=\widehat{\psi}_{ \pm \sigma_{3}}=e^{ \pm i \sigma_{3} \psi}$.
We know from the definitions, that this 1-rotor exists in the plane direction spanned by $\left\{\boldsymbol{i}_{3}\right\}$ This quantum oscillating rotor possesses an angular momentum direction from which we endow the angular momentum quantum operator idea for \hat{L}_{3} with a bivector direction
$\mathrm{L}_{3}=\hbar \lambda_{3} i_{3}=\hbar \lambda_{3} \boldsymbol{i} \sigma_{3}, \quad$ as a transversal bivector angular momentum operator,
where $\lambda_{3} \in \mathbb{R}$ is a real scalar operator span from the supporting direction $\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}$
From this, we now rewrite the eigenvalue equation (6.226) for the angular momentum

$$
\left(\hbar \lambda_{3} i_{3}\right)| \pm 1\rangle_{3} \doteq \pm 1 \hbar i_{3}| \pm 1\rangle_{3}
$$

of one free subton state that defines an eigenvalue direction $\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}$ for the operator $L_{3}=\hbar \lambda_{3} \boldsymbol{i}_{3}$ The direction bivector eigenvalue just replaces the traditional complex number eigenvalue. Consider the fact that $i_{3}=e^{i_{3} \pi / 2}$ operating by i_{3} rotate by a phase shift $\pi / 2$ in its own plane direction, then $i_{3}| \pm 1\rangle_{3}=e^{i_{3} \pi / 2} e^{ \pm i_{3} \psi}=e^{ \pm i_{3} \varphi}$, where $\pm \varphi=(\pi / 2 \pm \psi)$. Whence we have the real scalar operator angular momentum eigenvalue equation
(6.232) $\quad\left(\hbar \lambda_{3} i_{3}\right) e^{ \pm i_{3} \psi} \doteq \pm 1 \hbar i_{3} e^{ \pm i_{3} \psi} \quad \Rightarrow \quad \lambda_{3} e^{ \pm i_{3} \varphi}= \pm 1 e^{ \pm i_{3} \varphi} \quad \Rightarrow \quad e^{\mp i_{3} \varphi} \lambda_{3} e^{ \pm i_{3} \varphi}= \pm 1$ The direction is now given in the wavefunction $\boldsymbol{i}_{3}\left(e^{ \pm i_{3} \psi}\right)=\left(e^{ \pm i_{3} \psi}\right) \boldsymbol{i}_{3}$ by $\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}$ and too implicit in the plane exponential function $e^{ \pm i_{3} \psi}$ direction. (an analogy to [18] (8.25) p.271.) From (6.232) we see that $\left|\left\langle\lambda_{3}\right\rangle\right|=1$. Do we count $\hbar=1^{329}$ we simply get $\lambda_{3}= \pm 1$ and by that just $\pm i_{3} e^{ \pm i_{3} \psi}= \pm 1 i_{3} e^{ \pm i_{3} \psi}$ as a tautology for a free subton excitation. This subton excitation performs a free (external) angular momentum direction.

Counting the cyclical direction with the causal counting operator 1 we get the causal direction like angular momentum. ${ }^{329} \hbar=1$ just means as we know, that energy and frequency is the same quality measured by the same quantity unit.
© Jens Erfurt Andresen, M.Sc. Physics, Denmark -270 - Research on the a priori of Physics

This is the foundation to create and by that define a frame direction for physical entities. When we use the 1 -vector direction $\vec{L}_{3}^{+}=\hbar \sigma_{3}$, we have the transversal bivector $L_{3}^{+} / \hbar=\boldsymbol{i}=\boldsymbol{i} \sigma_{3}$ representing the oscillating angular momentum with the direction quality of one quantum.
6.4.9.2. Multi Excitations of Angular Momentum Internal in One Entity

When two angular momentum excitations as components of an entity exist in different planes we know from § 6.3.5.2 that their product does not commute. Therefore, we use the canonical sandwich method by half-angle rotor operations as indicated (6.164)-(6.166)
(6.233) $\quad \psi_{k \pm}^{1 / 2}=U_{\phi_{k}}=e^{+1 / 2 i_{k} \phi_{k}}$

The question now is, will this affect the angular momentum operator components $\sim(6.230)$
(6.234) $\mathrm{L}_{k}=\lambda_{k} \boldsymbol{i}_{k}=\lambda_{k} \boldsymbol{i} \sigma_{k}$

A guess could be that $\lambda_{k} \rightarrow \sim 1 / 2$. We will qualify this for an entity $\Psi_{1 / 2}$ below in section 6.5.
6.4.9.3. Intuition of Two Perpendicular Exited Circle Oscillators Inside one Entity

Presuming an entity Ψ_{3} in 3-space we demand at least one quantum excitation of angular momentum. We imagine a local frame by $\sigma_{3} \sim \vec{L}_{3}^{+}$, i.e., we choose a local direction for Ψ_{3} in our intuition, which is represented by the plane circular oscillator of the unitary circle group $\odot_{3}=\left\{U_{\theta}: \theta \rightarrow e^{i_{3} \theta} \in U(1) \mid \forall \theta \in \mathbb{R}\right\}$ that exists in the even geometric algebra $\mathcal{G}_{0,2}(\mathbb{R})$ for the 3 -space, As (6.31) and (6.119) $\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}$ we have that the chiral volume pseudoscalar \boldsymbol{i} turn the angular momentum 1-vector direction $\sigma_{3}=\vec{L}_{3}^{+} / \hbar$ into its dual transversal bivector, that is the true internal representative for the free direction for one quantum of angular momentum ($\hbar=1$),

$$
\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}=\boldsymbol{i} \vec{L}_{3}^{+} / \hbar=\mathrm{L}_{3}^{+} / \hbar
$$

(a unit bivector).

We remember that $i_{3}=\sigma_{2} \sigma_{1}$ where we have both σ_{2} and σ_{1} is perpendicular to σ_{3}, and further that their transversal plane bivectors $\boldsymbol{i}_{3}, \boldsymbol{i}_{2}$ and \boldsymbol{i}_{1} are mutual perpendicular We choose the orthonormal 1-vector dextral basis $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ as the autonomous frame for our fundamental entity Ψ_{3}. Implied from this we have its autonomous quaternion basis $\left\{1, \boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right\}$ With this knowledge we compare this to the perpendicular unitary 1-rotors
$U_{\phi}:=e^{1 / 2 i_{3} \phi}$ and $U_{\psi}:=e^{1 / i_{2} \psi}$ in the directions \boldsymbol{i}_{3} and \boldsymbol{i}_{2}, which was essential for the spherical coordinates in section 6.4.8.
This unitary 1-rotor $U_{\phi}:=e^{1 / 2 i_{3} \phi}$ oscillation manages the plane direction \boldsymbol{i}_{3}, whereby all 1 -vectors rotates along this \boldsymbol{i}_{3} plane. We now choose to rotate the internal autonomous frame $\left\{\sigma_{j}\right\}$ relative to an external dextral frame $\left\{\mathrm{e}_{j}\right\}$ that's fixed to the surroundings. This plane rotation oscillation is performed by the 1 -rotor U_{ϕ} using the canonical form (6.70)

$$
\boldsymbol{\sigma}_{j}=U_{\phi} \mathbf{e}_{j} U_{\phi}^{\dagger} \quad=\underline{\mathcal{R}}_{\phi} \mathbf{e}_{j}
$$

Because the 1 -rotor is in the \boldsymbol{i}_{3} plane we have $\mathrm{e}_{3}=\sigma_{3}$ as the steady direction for our entity Ψ_{3}. When we e.g., take the start reference from a fixed external direction 1 -vector e_{1}, we rotate

$$
\sigma_{1}=\sigma_{1}(\phi)=\underline{\mathcal{R}}_{\phi} \mathbf{e}_{1}=U_{\phi} \mathbf{e}_{1} U_{\phi}^{\dagger}=U_{\phi} U_{\phi} \mathbf{e}_{1}=U_{\phi}^{2} \mathbf{e}_{1}=e^{i_{3} \phi} \mathbf{e}_{1}
$$

Then seen autonomous from the entity Ψ_{3} frame $\left\{\sigma_{j}\right\}$ the surrounding frame is rotating reversed
$\mathrm{e}_{1}(\phi)=U_{\phi}^{\dagger} \sigma_{1} U_{\phi}=e^{-i_{3} \phi} \sigma_{1}$,
and $\mathbf{e}_{2}(\phi)=U_{\phi}^{\dagger} \sigma_{2} U_{\phi}=e^{-i_{3} \phi} \sigma_{2}$

Seen from the external lab world this frame $\left\{\mathbf{e}_{1}, e_{2}, e_{3}\right\}$ is fixed.
For the orthogonal 1-rotor circle oscillation $U_{\psi}:=e^{1 / 2 i_{2} \psi}$ around the perpendicular 1-vector axis σ_{2} with the angular momentum quantum $\sigma_{2}=\vec{L}_{2}^{+} / \hbar$ in the 1-vector direction

$$
\sigma_{2}=\sigma_{2}(\phi)=\underline{\mathcal{R}}_{\phi} \mathrm{e}_{2}=e^{i_{3} \phi} \mathbf{e}_{2} \quad=i_{3} e^{i_{3} \phi} \mathbf{e}_{1} . \quad \quad\left(\text { note } \sigma_{2}=i_{3} \sigma_{1} \Leftrightarrow \mathrm{e}_{2}=i_{3} \mathbf{e}_{1}\right)
$$

And the dual transversal angular momentum direction bivector for this $L_{2}^{+} / \hbar=\boldsymbol{i}_{2}=\boldsymbol{i} \sigma_{2}$
Then we designed the external picture so that this plane for angular momentum has
its direction rotating in the following oscillating way
C Jens Erfurt Andresen, M.Sc. NBI-UCPH,

