
 – II.  . The Geometry of Physics  –  6. The Natural Space of Physics  –  6.4. The Geometric Clifford Algebra –  
 

© Jens Erfurt Andresen, M.Sc. Physics, Denmark – 270 – Research on the a priori of Physics   – December 2022 
 

6.4.9. Oscillations in -space 
The general claim in this book (concerning chapter I.) for an entity  to exist is, that 
we demand it to contain at least one quantum of some frequency energy  . 

6.4.9.1. Review of the Quantum Mechanical Circle Oscillator 
In section 3.3 we introduced the plane excited circle oscillator I.  (3.148) and (3.163) -  

(6.225) ± = ±|0,0 = |1, ±1 =    2 ( )  ± , 
where  is the transversal plane symmetry factor with   =| |=1,  and the radial 
distribution is auto-normalized  1, ±1|1, ±1 =    ( 2 ( ) ) ± =   = 1. 
This is an eigenvalue solution to the angular momentum quantum operator equation (3.167) -  

(6.226) |1, ±1 ±1 |1, ±1 . 
Where the angular momentum operator  (3.103) govern a rotating state (6.225) in a plane that is 
transversal to a 1-vector  direction for one quantum = =1   of the angular momentum, in 
an analogy with the classical angular momentum 1-vector as (3.171) -  

(6.227)  =  =  =    ~            ~    ,            One Quantum.328 
For simplification, we use the autonomous angular frequency energy = 1 so that the phase 
angle (e.g. , ,  ~ ) is the same as the development parameter internal in the entity. 
Removing the radial and the circular distributing factors 2 ( )  we have a pure unitary oscillator 

(6.228) ± = |±1 =   ±           or            ± = |±1 =   ± , 
where there is no specified physical direction in a -space. (Descartes: No Extension.) 
In opposition to this traditional view, we led the transversal angular momentum quantum represent 
the quality of direction by the unit 1-vector nn normal to the angular rotation plane direction unit 

= = n, whence we define a frame direction, e.g. n, whereby we have 
the transversal bivector plane direction  = 2 1 = 3 = n  for the angular rotation plane. 
By this primary quality of direction, we rewrite (6.228) -  

(6.229) ± 3 = |±1 3 =  ± 3     =      ± 3 =  ± 3 . 
We know from the definitions, that this 1-rotor exists in the plane direction spanned by { }. 
This quantum oscillating rotor possesses an angular momentum direction from which we endow 
the angular momentum quantum operator idea for  with a bivector direction 

(6.230) L =  =  , as a transversal bivector angular momentum operator, 
where   is a real scalar operator span from the supporting direction  = . 
From this, we now rewrite the eigenvalue equation (6.226) for the angular momentum 

(6.231) ( )|±1 3  ±1 |±1 3 
of one free subton state that defines an eigenvalue direction =  for the operator L = . 
The direction bivector eigenvalue just replaces the traditional complex number eigenvalue. 
Consider the fact that  = 2  operating by  3 rotate by a phase shift 2 in its own plane 
direction, then  |±1 3 =  3 ± 3 =  ± 3 ,     where      ± = ( 2 ± ). 
Whence we have the real scalar operator angular momentum eigenvalue equation 

(6.232) ( ) ± 3 ±1 ± 3        ± 3 = ±1 ± 3         3  
 

± 3 = ±1. 
The direction is now given in the wavefunction  ± = ±   by = 3  and too 
implicit in the plane exponential function   ± 3   direction.  (an analogy to [18]  (8.25) p.271.) 
From (6.232) we see that | | = 1.  Do we count  = 1329 we simply get  = ±1 and by that 
just  ± ± 3 = ±1 ± 3   as a tautology for a free subton excitation. 
This subton excitation performs a free (external) angular momentum direction. 

 
328 Counting the cyclical direction with the causal counting operator  we get the causal direction like angular momentum. 
329  =1 just means as we know, that energy and frequency is the same quality measured by the same quantity unit. 
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This is the foundation to create and by that define a frame direction for physical entities. 
When we use the 1-vector direction = , we have the transversal bivector  L = = , 
representing the oscillating angular momentum with the direction quality of one quantum. 

6.4.9.2. Multi Excitations of Angular Momentum Internal in One Entity 
When two angular momentum excitations as components of an entity exist in different planes , 
we know from § 6.3.5.2 that their product does not commute. Therefore, we use the canonical 
sandwich method by half-angle rotor operations as indicated (6.164)-(6.166) -  

(6.233) ±
½ = =  ½ . 

The question now is, will this affect the angular momentum operator components ~(6.230) -  
(6.234) L = = . 

A guess could be that  ~½. We will qualify this for an entity ½ below in section 6.5.  
6.4.9.3. Intuition of Two Perpendicular Exited Circle Oscillators Inside one Entity 

Presuming an entity  in -space we demand at least one quantum excitation of angular 
momentum. We imagine a local frame by ~ ,  i.e., we choose a local direction for  in 
our intuition, which is represented by the plane circular oscillator of the unitary circle group 

3= : (1)    that exists in the even geometric algebra , ( ) for the -space, 
As (6.31) and (6.119)  = 3 we have that the chiral volume pseudoscalar   turn the angular 
momentum 1-vector direction  =   into its dual transversal bivector, that is the true 
internal representative for the free direction for one quantum of angular momentum ( =1), 

(6.235)  = 3 =  =   L . (a unit bivector). 
We remember that = 2 1 where we have both 2 and  is perpendicular to , 
and further that their transversal plane bivectors ,  and  are mutual perpendicular. 
We choose the orthonormal 1-vector dextral basis { , , } as the autonomous frame for our 
fundamental entity . Implied from this we have its autonomous quaternion basis {1, , , }. 
With this knowledge we compare this to the perpendicular unitary 1-rotors 
 ½   and  ½    in the directions   and , which was essential for the 
spherical coordinates in section 6.4.8. 
This unitary 1-rotor  ½   oscillation manages the plane direction , whereby all  
1-vectors rotates along this  plane. We now choose to rotate the internal autonomous frame 

 relative to an external dextral frame e  that’s fixed to the surroundings. This plane rotation 
oscillation is performed by the 1-rotor  using the canonical form (6.70) -  

(6.236) = e  = e . 
Because the 1-rotor is in the  plane we have e =  as the steady direction for our entity . 
When we e.g., take the start reference from a fixed external direction 1-vector e , we rotate 

(6.237) = ( ) = e = e = e =  e =    e . 
Then seen autonomous from the entity  frame  the surrounding frame is rotating reversed 

(6.238) e ( ) = =    , and     e ( ) = =     
Seen from the external lab world this frame {e , ee , ee } is fixed. 

For the orthogonal 1-rotor circle oscillation   ½   around the perpendicular 1-vector axis 
 with the angular momentum quantum  =   in the 1-vector direction 

(6.239) = ( ) =  e =  e         = e . (note =  e = e ). 
And the dual transversal angular momentum direction bivector for this = = . 
Then we designed the external picture so that this plane for angular momentum has 
its direction rotating in the following oscillating way 
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