Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931
6.4.8. The Rotated Direction in 3 -space - 6.4.8.2 Rotation of a Chosen Direction in 3 Space -
$\mathrm{n}=U_{\varphi} U_{\theta} \sigma_{3} U_{\theta}^{\dagger} U_{\varphi}^{\dagger}=U \sigma_{3} U^{\dagger}=$
$+\left(\cos ^{1} 2 \varphi \cos 1 / 2 \theta\right)^{2} \sigma_{3}-(\sin 1 / 2 \varphi \sin 1 / 2 \theta)^{2} \sigma_{3}-(\cos 1 / 2 \varphi \sin 1 / 2 \theta)^{2} \sigma_{3}+\left(\sin 1 / 2 \varphi \cos ^{1} / 2 \theta\right)^{2} \sigma_{3}$ (6.213) $\quad+\cos ^{1 / 2} \varphi \sin 1 / 2 \varphi \cos ^{1} 1 / 2 \theta \sin 1 / 2 \theta\left(\sigma_{2}+\sigma_{2}+\sigma_{2}+\sigma_{2}\right)$
$+(\cos 1 / 2 \varphi)^{2} \cos 1 / 2 \theta \sin 1 / 2 \theta\left(\sigma_{1}+\sigma_{1}\right)-(\sin 1 / 2 \varphi)^{2} \sin 1 / 2 \theta \cos 1 / 2 \theta\left(\sigma_{1}+\sigma_{1}\right)$
$+\cos 1 / 2 \varphi \sin 1 / 2 \varphi(\cos 1 / 2 \theta)^{2}(\boldsymbol{i}-\boldsymbol{i})-\sin 1 / 2 \varphi \cos 1 / 2 \varphi(\sin 1 / 2 \theta)^{2}(\boldsymbol{i}-\boldsymbol{i})$
The last pseudoscalar terms vanish, and we write out its 1 -vector component direction
(6.214) $\quad n_{3} \sigma_{3}=\left((\cos 1 / 2 \varphi)^{2}+(\sin 1 / 2 \varphi)^{2}\right)\left((\cos 1 / 2 \theta)^{2}-(\sin 1 / 2 \theta)^{2}\right) \sigma_{3}=\quad \cos \theta \sigma_{3}$,
(6.215) $\quad n_{2} \sigma_{2}=2 \cos 1 / 2 \varphi \sin 1 / 2 \varphi 2 \cos 1 / 2 \theta \sin 1 / 2 \theta \sigma_{2}=\quad \sin \varphi \sin \theta \sigma_{2}$,
(6.216) $\quad n_{1} \sigma_{1}=2\left((\cos 1 / 2 \varphi)^{2}-(\sin 1 / 2 \varphi)^{2}\right) \cos 1 / 2 \theta \sin 1 / 2 \theta \sigma_{1}=\quad \cos \varphi \sin \theta \sigma_{1}$,
from which the unit 1 -vector direction from (6.140) is
(6.217) $\quad \mathrm{n}=U \sigma_{3} U^{\dagger}=n_{1} \sigma_{1}+n_{2} \sigma_{2}+n_{3} \sigma_{3}=\sin (\theta)\left(\cos (\varphi) \sigma_{1}+\sin (\varphi) \sigma_{2}\right)+\cos (\theta) \sigma_{3} \in\left(V_{3}, \mathbb{R}\right),|\mathrm{n}|=1$ whose Cartesian coordinates are expressed by its unit spherical coordinates $(1, \theta, \varphi)$
$n_{1}=\cos \varphi \sin \theta$
(6.218) $\left.\quad \begin{array}{rl}n_{2} & =\sin \varphi \sin \theta \\ n_{3} & =\cos \theta\end{array}\right\}$ with pole angle θ, and azimuthal angle φ

This is the spherical map $\mathcal{R}_{(\theta, \varphi)}: \sigma_{3} \longrightarrow \mathrm{n}$, which specifies a direction relative to the polar direction When it comes to the versor quaternion plane direction we can translate from (6.217) to the dual space by using (6.142)
(6.219) $\quad \boldsymbol{i}_{\mathrm{n}}=\boldsymbol{i n}=n_{1} \boldsymbol{i}_{1}+n_{2} \boldsymbol{i}_{2}+n_{3} \boldsymbol{i}_{3}, \quad$ where $\boldsymbol{i}_{\mathbf{n}}{ }^{2}=-1$ and $n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1$

This is the spherical rotation map $\underline{\mathcal{R}}_{(\theta, \varphi)}: \boldsymbol{i}_{3} \longrightarrow \boldsymbol{i}_{\mathrm{n}}$.
By this, we get a resulting transversal bivector direction $\boldsymbol{i}_{\mathrm{n}}=\boldsymbol{i}$ of a simplified circular 1-rotor
$U_{\varphi_{\mathrm{n}}}=e^{i \mathrm{n}^{1} / 2 \varphi_{\mathrm{n}}}=e^{+i_{\mathrm{n}} 1 / 2 \varphi_{\mathrm{n}}}=1 \cos 1 / 2 \varphi_{\mathrm{n}}+\boldsymbol{i}_{\mathrm{n}} \sin 1 / 2 \varphi_{\mathrm{n}}$
Now we will imagine that the angular parameter $\varphi_{\mathrm{n}}=\omega t$ is a development parameter in one oscillation, which has its own autonomous 1 -vector direction n .
On top of this, we will also imagine that the direction n can oscillate too. Then the direction of the circular plane $\boldsymbol{i}_{\mathbf{n}}$ is oscillating too, then (6.220) is not as simple as it looks.
E.g., an oscillation in the \boldsymbol{i}_{3} plane by the function $e^{i_{3} \varphi_{3}}=e^{i_{3} \omega_{3} t}$ and along \boldsymbol{i}_{2} by $e^{i_{2} \varphi_{2}}=e^{i_{2} \omega_{2} t}$ $\boldsymbol{i}_{\mathrm{n}}\left(\phi_{3}\right)=e^{i_{3} \varphi_{3}} \boldsymbol{i}_{\mathrm{n}_{0}} \quad$ and $\quad \boldsymbol{i}_{\mathrm{n}}\left(\varphi_{2}\right)=e^{\boldsymbol{i}_{2} \varphi_{2}} \boldsymbol{i}_{\mathrm{n}_{0}}$
The reader may in thought consider the impact, that a merge of these angular development parameters φ_{3}, φ_{2} in the two governed 1-rotors, and imagine the form of
$\boldsymbol{i}_{\mathrm{n}}\left(\varphi_{3}, \varphi_{2}\right)=\boldsymbol{i n}\left(\varphi_{3}, \varphi_{2}\right)$ for the resulting rotating, rotation plane.

A comment to the inverse of (6.208)

$$
\sigma_{3}=\underline{\mathcal{R}}^{-1}(\mathrm{n})=U^{\dagger} \mathrm{n} U=U_{\phi}^{\dagger} U_{\theta}^{\dagger} \mathrm{n} U_{\theta} U_{\phi}=e^{-1 / 2 i_{3} \phi} e^{-1 / 2 i_{2} \theta} \mathrm{n} e^{+1 / 2 i_{2} \theta} e^{+1 / 2 i_{3} \phi}
$$

It just gives the same as reversing both angular parameters,
$-n_{1}=\cos -\varphi \sin -\theta$
(6.223) $\quad n_{2}=\sin -\varphi \sin -\theta$ $n_{3}=\cos -\theta$
Therefore, not a parity inversion but the double reversion is just a reflection in one plane \boldsymbol{i}_{1}
$\mathrm{n}^{\prime}=\underline{\mathcal{R}}^{-1} \sigma_{3}=U^{\dagger} \sigma_{3} U=U_{\varphi}^{\dagger} U_{\theta}^{\dagger} \sigma_{3} U_{\theta} U_{\varphi}=-n_{1} \sigma_{1}+n_{2} \sigma_{2}+n_{3} \sigma_{3}$.

