Restricted to brief peruse for research, reviews, or scholarly a	anarysis, S with required quotation reference.
– II The Geometry of Physics – 6. The Natural Space of Physics – 6.4. The Geometric Clifford Algebra –	- 6.4.8. The Rotated Direction in 3-space - 6.4.8.2 Rotation of a C
 6.4.8. The Rotated Direction in 3-space We look at rotations from the group of versor quaternions³²⁶ described from a basis {1, i₁, i₂, i₃} (6.134) in the simple real linear unitary form (6.136) (6.204) U = u₀ + u₁i₁ + u₂i₂ + u₃i₃ ∈ H, where UU[†] = u₀² + u₁² + u₂² + u₃² = 1, and ∀u_κ ∈ ℝ. We start with the simplified³²⁷ 1-rotor versor elements of the angular form with an angle φ (6.205) U_φ = 1 cos ½φ + i_φ sin ½φ = e^{+i_φ½φ}, as multivector = U = vu = v·u+v∧u = e^{+½φ}, where i_φ is the bivector unit for the rotation plane <i>direction</i> of this circular angular form. To get a full regular rotation <u>R</u>(x) = <u>R</u>x = UxU[†] of <i>directions</i> in 3-space we combine two U(1) plane circular 1-rotors to a 2-rotor U = U_φU_θ and by that achieve two angular independent parameters θ and φ arguments, e.g. unit spherical coordinates (1, θ, φ) for S². In our practice, we prefer to represent this independency by two orthogonal angular bivectors (6.206) θ = θi₂ and φ = φi₃ 	$n = U_{\varphi}U_{\theta}\sigma_{3}U_{\theta}^{\dagger}U_{\varphi}^{\dagger} = U\sigma_{3}U^{\dagger} = $ $+(\cos \frac{1}{2}\varphi \cos \frac{1}{2}\theta)^{2}\sigma_{3} - (\sin \frac{1}{2}\varphi \sin \frac{1}{2}\theta)^{2}\sigma_{3} + \cos \frac{1}{2}\theta \sin \frac{1}{2}\theta (\sigma_{2} + \sigma_{2} + \sigma_{2})^{2} + (\cos \frac{1}{2}\varphi)^{2} \cos \frac{1}{2}\theta \sin \frac{1}{2}\theta (\sigma_{1} + \sigma_{1}) - (\sin \frac{1}{2}\varphi)^{2} \cos \frac{1}{2}\theta \sin \frac{1}{2}\theta (\sigma_{1} + \sigma_{1}) - (\sin \frac{1}{2}\varphi)^{2} \cos \frac{1}{2}\theta \sin \frac{1}{2}\theta (\sigma_{1} + \sigma_{1}) - (\sin \frac{1}{2}\varphi)^{2} \cos \frac{1}{2}\theta \sin \frac{1}{2}\theta (\sigma_{1} + \sigma_{1}) - (\sin \frac{1}{2}\varphi)^{2} \sin \frac{1}{2}\theta (\cos \frac{1}{2}\theta)^{2} (i - i) - \sin \frac{1}{2}\theta \sin \frac{1}{2}\theta (\cos \frac{1}{2}\theta)^{2} + (\sin \frac{1}{2}\varphi)^{2} ((\cos \frac{1}{2}\theta)^{2})^{2} (\cos \frac{1}{2}\theta)^{2} \sin \frac{1}{2}\theta \sigma_{2}$ $(6.214) n_{3}\sigma_{3} = ((\cos \frac{1}{2}\varphi)^{2} + (\sin \frac{1}{2}\varphi)^{2})((\cos \frac{1}{2}\theta)^{2})^{2} (\cos \frac{1}{2}\theta)^{2} \sin \frac{1}{2}\theta \sigma_{2}$ $(6.215) n_{2}\sigma_{2} = 2\cos \frac{1}{2}\varphi \sin \frac{1}{2}\varphi 2\cos \frac{1}{2}\theta \sin \frac{1}{2}\theta \sigma_{2}$ $(6.216) n_{1}\sigma_{1} = 2((\cos \frac{1}{2}\varphi)^{2} - (\sin \frac{1}{2}\varphi)^{2})\cos \frac{1}{2}\theta \sin \frac{1}{2}\theta \sigma_{2}$ $(6.217) n = U\sigma U^{\frac{1}{2}} = n \sigma + n \sigma + n \sigma = \sin(\theta)(\cos \theta)$
bivectors \mathbf{i}_2 and \mathbf{i}_3 that autonomous implies the third basis bivector <i>direction</i> $\mathbf{i}_1 = \mathbf{i}_2 \mathbf{i}_3$. A scalar has no <i>direction</i> , so its unit is a pure 1 and the versor basis is just $\{1, \mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3\}$. Whence we write the two $U(1)$ 1-rotors as $U_{\theta} := e^{\frac{1}{2}\mathbf{i}_2\theta} = e^{+\frac{1}{2}\theta}$ and $U_{\varphi} = e^{\frac{1}{2}\mathbf{i}_3\varphi} = e^{+\frac{1}{2}\varphi}$. We combine these to a new $SU(2)$ isomorph 2-rotor by multiplication (6.207) $U = U_{\varphi}U_{\theta} = e^{+\frac{1}{2}\varphi}e^{+\frac{1}{2}\theta} = e^{+\frac{1}{2}\mathbf{i}_3\varphi}e^{+\frac{1}{2}\mathbf{i}_2\theta}$, and its reverse $U^{\dagger} = U_{\theta}^{\dagger}U_{\phi}^{\dagger} = e^{-\frac{1}{2}\mathbf{i}_2\theta}e^{-\frac{1}{2}\mathbf{i}_3\varphi}$. 6.4.8.2. Rotation of a Chosen Direction in 3 Space	(6.218) $ \begin{array}{l} n_1 = \cos \varphi \sin \theta \\ n_2 = \sin \varphi \sin \theta \\ n_3 = \cos \theta \end{array} \right\} \text{ with pole angle } \theta, \text{ and } \\ n_3 = \cos \theta \end{array} $ With pole angle θ , and $n_3 = \cos \theta$ with pole angle θ , and $n_3 = \cos \theta$ with pole angle θ , and $n_3 = \cos \theta$ with pole angle θ , and $n_3 = \cos \theta$ with pole angle θ , and $n_3 = \cos \theta$ with pole angle θ , and $n_3 = \cos \theta$ with pole angle θ , and $n_3 = \cos \theta$ with pole angle θ .
basis { $\sigma_1, \sigma_2, \sigma_3$ }. By this we select the chosen <i>direction</i> as $\sigma_3 = -ii_3$. For the regular rotation of a chosen <i>direction</i> σ_3 we use what we called <i>the canonical form for any orthogonal transformation</i> (5.193) and (6.70)	(6.219) $i_{\mathbf{n}} = i\mathbf{n} = n_1 i_1 + n_2 i_2 + n_3 i_3$, when This is the <i>spherical</i> rotation map $\underline{\mathcal{R}}_{(\theta,\varphi)}: i_3 \rightarrow i_{\mathbf{n}}$ By this, we get a resulting transversal bivector <i>direction</i> (6.220) $U_{\varphi_{\mathbf{n}}} = e^{i\mathbf{n}\frac{1}{2}\varphi_{\mathbf{n}}} = e^{+i_{\mathbf{n}}\frac{1}{2}\varphi_{\mathbf{n}}} = 1 \cos \frac{1}{2}\varphi_{\mathbf{n}} + i_{\mathbf{n}}$ Now we will imagine that the angular parameter φ
	Now we will imagine that the angular parameter φ one oscillation, which has its own autonomous 1-w On top of this, we will also imagine that the <i>direct</i> the circular plane i_n is oscillating too, then (6.220) E.g., an oscillation in the i_3 plane by the function $i_n(\varphi_3) = e^{i_3\varphi_3}i_{n_0}$ and $i_n(\varphi_2) = e^{i_3\varphi_3}i_{n_0}$ The reader may in thought consider the impact, the parameters φ_3, φ_2 in the two governed 1-rotors, an $i_n(\varphi_3, \varphi_2) = in(\varphi_3, \varphi_2)$ for the resulting rotating
$ \begin{array}{l} \text{(6.211)} U = \cos \frac{1}{2}\varphi \cos \frac{1}{2}\theta & -\sin \frac{1}{2}\varphi \sin \frac{1}{2}\theta \mathbf{i}_1 + \cos \frac{1}{2}\varphi \sin \frac{1}{2}\theta \mathbf{i}_2 + \sin \frac{1}{2}\varphi \cos \frac{1}{2}\theta \mathbf{i}_3 , \\ \text{(6.212)} \boldsymbol{\sigma}_3 U^{\dagger} = \cos \frac{1}{2}\varphi \cos \frac{1}{2}\theta \boldsymbol{\sigma}_3 + \sin \frac{1}{2}\varphi \sin \frac{1}{2}\theta \boldsymbol{\sigma}_2 + \cos \frac{1}{2}\varphi \sin \frac{1}{2}\theta \boldsymbol{\sigma}_1 - \sin \frac{1}{2}\varphi \cos \frac{1}{2}\theta \mathbf{i} , \\ \frac{because:}{3}, \boldsymbol{\sigma}_3 \mathbf{i}_1 = \boldsymbol{\sigma}_2, \boldsymbol{\sigma}_3 \mathbf{i}_2 = -\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_3 \mathbf{i}_3 = \mathbf{i} . \\ \frac{1,1:1:}{2,1:1:} -\mathbf{i}_1 \boldsymbol{\sigma}_3 = \boldsymbol{\sigma}_2, 1,2:2: \boldsymbol{\sigma}_2, 4,3:3: \mathbf{i}_3 \boldsymbol{\sigma}_1 = \boldsymbol{\sigma}_2, 3,4:4: -\mathbf{i}_2 \mathbf{i} = \boldsymbol{\sigma}_2, \\ \frac{3,1:1:}{4,1:1:} \mathbf{i}_2 \boldsymbol{\sigma}_3 = \boldsymbol{\sigma}_1, 4,2:3: -\mathbf{i}_3 \boldsymbol{\sigma}_2 = \boldsymbol{\sigma}_1, 1,3:2: \boldsymbol{\sigma}_1, 2,4:4: -\mathbf{i}_1 \mathbf{i} = \boldsymbol{\sigma}_1, \\ \frac{4,1:1:}{4,1:1:} \mathbf{i}_3 \boldsymbol{\sigma}_3 = \mathbf{i} , 3,2:3: \mathbf{i}_2 \boldsymbol{\sigma}_2 = \mathbf{i} , 2,3:4: \mathbf{i}_1 \boldsymbol{\sigma}_1 = \mathbf{i} , 1,4:2: \mathbf{i} , \\ \end{array} \right) $ we get by (6.211) U operating on the product (6.212) \boldsymbol{\sigma}_3 U^{\dagger} the specific <i>direction</i> from (6.208) \\ \end{array}	A comment to the inverse of (6.208): (6.222) $\sigma_{3} = \underline{\mathcal{R}}^{-1}(\mathbf{n}) = U^{\dagger}\mathbf{n}U = U^{\dagger}_{\phi}U^{\dagger}_{\theta}\mathbf{n}U_{\theta}U_{\phi} =$ It just gives the same as reversing both angular particular in the inverse of the same as reversing both angular particular in the inverse of the same as reversing both angular particular in the inverse of the same as reversing both angular particular in the inverse of the same as reversing both angular particular in the inverse of the same as reversing both angular particular in the same as reversing both angular particular in the inverse of the same as reversing both angular particular in the inverse of the same as reversing both angular particular in the inverse of the same as reversing both angular particular in the same as reversing both angular particular in the inverse of the same as reversing both angular particular in the sam
\bigvee $\frac{327}{2}$ With a simplified rotor, we understand a rotor that only exists along its own plane and therefore belongs to the $U(1)$ group.	
© Jens Erfurt Andresen, M.Sc. Physics, Denmark - 268 – Research on the a priori of Physics – December 2022 For quotation reference use: ISBN-13: 978-8797246931	© Jens Erfurt Andresen, M.Sc. NBI-UCPH, – 269 For quotation reference use: ISBN-1

of a Chosen Direction in 3 Space -

```
(\theta)^2 \sigma_3 - (\cos \frac{1}{2} \theta)^2 \sigma_3 + (\sin \frac{1}{2} \theta)^2 \sigma_3
  \sigma_2 + \sigma_2 + \sigma_2
 (\sin \frac{1}{2} \boldsymbol{\varphi})^2 \sin \frac{1}{2} \boldsymbol{\theta} \cos \frac{1}{2} \boldsymbol{\theta} (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_1)
\sin \frac{1}{2} \frac{\varphi}{\varphi} \cos \frac{1}{2} \frac{\varphi}{\varphi} (\sin \frac{1}{2} \theta)^2 (\boldsymbol{i} - \boldsymbol{i})
write out its 1-vector component directions
(\sqrt{2\theta})^2 - (\sin \sqrt{2\theta})^2 \sigma_3 =
                                                                                 \cos\theta \sigma_3,
\frac{1}{2\theta} \sigma_2 =
                                                                   \sin \varphi \sin \theta \sigma_2,
\frac{1}{2\theta} \sin \frac{1}{2\theta} \sigma_1 =
                                                                   \cos \varphi \sin \theta \sigma_1,
 (6.140) is
```

```
(\cos(\varphi) \sigma_1 + \sin(\varphi) \sigma_2) + \cos(\theta) \sigma_3 \in (V_3, \mathbb{R}), |\mathbf{n}| = 1,
by its unit spherical coordinates (1, \theta, \varphi)
```

, and azimuthal angle φ

nich specifies a *direction* relative to the polar *direction*. e *direction* we can translate from (6.217) to the dual

where $i_n^2 = -1$ and $n_1^2 + n_2^2 + n_3^2 = 1$

or *direction* $i_n = in$ of a simplified circular 1-rotor $\mathbf{h} + \mathbf{i}_{\mathbf{n}} \sin \frac{1}{2} \varphi_{\mathbf{n}}$ eter $\varphi_{\mathbf{n}} = \omega t$ is a development parameter in us 1-vector *direction* **n**. *direction* **n** can oscillate too. Then the *direction* of 5.220) is not as simple as it looks. ction $e^{i_3\varphi_3} = e^{i_3\omega_3 t}$ and along i_2 by $e^{i_2\varphi_2} = e^{i_2\omega_2 t}$ $=e^{i_2\varphi_2}i_{\mathbf{n}_0}.$ ct, that a merge of these angular development ors, and imagine the form of tating, rotation plane.

$$e^{-\frac{1}{2}\mathbf{i}_{3}\phi}e^{-\frac{1}{2}\mathbf{i}_{2}\theta}\mathbf{n}e^{+\frac{1}{2}\mathbf{i}_{2}\theta}e^{+\frac{1}{2}\mathbf{i}_{3}\phi}.$$

ar parameters,

ble reversion is just a reflection in one plane i_1 $= -n_1 \sigma_1 + n_2 \sigma_2 + n_3 \sigma_3.$

Volume I, - Edition 2 - 2020-22, - Revision 6,

December 2022