

6.4.7. The Transversal Bivector Idea Dual to a 1-vecetor Foundation for Rotations - 6.4.7.1 The two Orthogonal Rotors as

Now we will compare the Euler angles of the rotor (6.187) with the versor quaternion expression (6.136) $U=\hat{Q}=u_{0}+u_{1} \boldsymbol{i}_{1}+u_{2} \boldsymbol{i}_{2}+u_{3} \boldsymbol{i}_{3} \in \mathbb{H}$, therefor we rewrite (6.187)

$$
U=U_{\phi} U_{\theta} U_{\psi}=e^{1 / 2 i_{3} \phi} e^{1 / 2 i_{1} \theta} e^{1 / 2 i_{3} \psi}
$$

$$
=\left(\cos 1 / 2 \phi+i_{3} \sin 1 / 2 \phi\right)\left(\cos 1 / 2 \theta+i_{1} \sin 1 / 2 \theta\right)\left(\cos 1 / 2 \psi+i_{3} \sin 1 / 2 \psi\right)
$$

(6.194) $=\cos 1 / 2 \theta\left(\cos ^{1} 1 / 2 \phi \cos 1 / 2 \psi-\sin 1 / 2 \phi \sin 1 / 2 \psi\right)$
$+\sin ^{1 / 2} \theta\left(\cos ^{1} 12 \phi \cos ^{1} 2 / 2 \psi-\sin 1 / 2 \phi \sin 1 / 2 \psi\right) \boldsymbol{i}_{1}$
$+\sin ^{1} 1 / 2 \theta\left(\sin 1 / 2 \phi \cos ^{1} 1 / 2 \psi-\cos 1 / 2 \phi \sin 1 / 2 \psi\right) \boldsymbol{i}_{2}$
$+\cos 1 / 2 \theta(\sin 1 / 2 \phi \cos 1 / 2 \psi+\cos 1 / 2 \phi \sin 1 / 2 \psi) \boldsymbol{i}_{3}$
We have the unitary versor quaternion coordinates:

$$
u_{0}=\cos ^{1} / 2 \theta \cos (1 / 2(\phi+\psi))
$$

6.195) $\quad u_{1}=\sin 1 / 2 \theta \cos (1 / 2(\phi+\psi))$
$u_{2}=\sin 1 / 2 \theta \sin (1 / 2(\phi-\psi))$
$u_{3}=\cos 1 / 2 \theta \sin (1 / 2(\phi+\psi))$
By this, we have specified the versor quaternion by the Euler angles, e.g., for case (6.145e) (6.196) $\hat{Q}=u_{0}+u_{3} \boldsymbol{i}_{3}+u_{1} \boldsymbol{i}_{1}+u_{2} \boldsymbol{i}_{2}=\left(u_{0}+u_{3} \boldsymbol{i}_{3}\right)+\left(u_{1}+u_{2} \boldsymbol{i}_{3}\right) \boldsymbol{i}_{1}$

We will not study these practice rotations in more detail for 3 -space here but mention that versor quaternions are used a lot in computer graphics, robotics, flight, and space satellite management.

6.4.6.2. The Other Euler Angle Sequenc

The same Euler angles parameters as used in (6.187) where instead of rotating in the entity Ψ reference system $\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \sigma_{3}\right\}$ with duals $\boldsymbol{i}_{k}=\boldsymbol{i} \boldsymbol{\sigma}_{k}$ is rotating the reference frame in two sequences:
a. First, we choose the reference system as (6.179) with the primary rotation axis σ_{3} in duality with the plane unit bivector $\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}$ direction. Around in this defining an arbitrary rotor $U_{\phi}=e^{1 / 2 i_{3} \phi}$ and calling its angle ϕ for the outer Euler angle for the frame rotation to a note direction $\mathrm{n}=\mathrm{e}_{1}^{\prime \prime \prime}=U_{\phi}^{\dagger} \sigma_{1} U_{\phi}$ as a new intermediary reference frame $\left\{\mathrm{n}, \mathrm{e}_{2}^{\prime \prime \prime}, \sigma_{3}\right\}$.
b. Second, by the newly created plane direction $i_{\mathrm{n}}=\boldsymbol{i}$ d dual to the intermediate node n . In that we define an arbitrary rotor $U_{\theta}:=e^{1 / 2 i n \theta}$ and call its angle θ for the tilting Euler angle of frame tilt rotation in this pqg-2direction in plane, θ is taken from the σ_{3} axis tilting direction \boldsymbol{i}_{3} plane to the direction $\boldsymbol{i} \mathrm{e}_{3}=\mathrm{e}_{2}^{\prime \prime \prime} \mathrm{n}$, resulting in a new frame $\left\{\mathrm{n}, \mathrm{e}_{2}^{\prime \prime \prime}, \mathrm{e}_{3},\right\}$ dual to $\left\{i_{n}, \mathbf{e}_{3} n, \boldsymbol{i} \mathbf{e}_{3}\right\}$.
c. Third, in this new frame we have the rotation axis \mathbf{e}_{3} with the dual transversal plane $\boldsymbol{i} \mathbf{e}_{3}$ around which symmetry direction we define the third arbitrary rotor $U_{\psi}:=e^{1 / 2 i e_{3} \psi}$ and call its angle ψ for the inner Euler angle, as the rotation in the entity Ψ direction $\boldsymbol{i} \mathbf{e}_{3}$.
In this frame scenario, we combine this sequence of the three 1 -rotors (as used by Doran \& Lasenby [18]p.51) to one unitary rotor operator U, that can perform the total rotation $U=U_{\psi} U_{\theta} U_{\phi}=e^{1 / 2 i i_{3} \psi} e^{1 / 2 i n \theta} e^{1 / 2 i_{3} \phi}$.
This resulting rotor is just the same as (6.187) used in (6.193) and (6.192)

$$
\mathbf{e}_{k}=U^{\dagger} \sigma_{k} U \quad \text { and } \quad \Psi_{3}=U \Psi U^{\dagger}
$$

As the reader may know there are other systems to interpret Euler angles relative to the axis (The structure in (6.145a)-(6.145f) indicates some of the possibilities of rotation planes.) Anyway, in robotics, the axis is distributed and cannot necessarily be traded as one locality in a 3 -space.
$\left\{1, \boldsymbol{i}_{1}:=\boldsymbol{i}_{2} i_{3}, \boldsymbol{i}_{2}:=i_{3} \boldsymbol{i}_{1}, \boldsymbol{i}_{3}:=\boldsymbol{i}_{1} \boldsymbol{i}_{2}\right\}$
as the basis for the even geometric algebra $\mathcal{G}_{0,2}$ for a locality in 3 -space, where the
primary qualities are of even grades (pqg-0 and pqg-2). The three subject directions $\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}$ will always intersect in just one geometric point of $\mathcal{3}$-space that will represent a centrum of the locality. The translation invariance of such three perpendicular plane objects will always ensure one centrum of locality for a physical entity Ψ_{3} in 3 -space. In § 6.1 .3 .4 we had first, that two inclining planes (E XI.De.6.) will intersect in a straight line. This line will intersect the third plane in just one autonomous point, it will be an origo for these three inclining planes.

[^0]For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

[^0]: ${ }^{325}$ For this two-parameter rotor $U_{\phi, v} \not \approx U_{\psi} U_{\phi}$, for intuition you need to notice that the initial plane direction \boldsymbol{i}_{2} as a subject is For this two-parameter rotor $U_{\phi, \psi} \not \approx U_{\psi} U_{\phi}$, for intuition you need to notice that the initial plane direction i_{2} as a subject is
 rotated by U_{ϕ} as $\boldsymbol{i}_{2}^{U}=U_{\phi} \boldsymbol{i}_{2} U_{\phi}^{\dagger}=e^{1 / 2 i_{3} \phi} \boldsymbol{i}_{2} e^{-1 / 2 i_{3} \phi}=e^{i_{3} \phi} \boldsymbol{i}_{2}$, so that the bivector $B^{\cup}=1 / 2 \boldsymbol{i}_{3} \phi+1 / 2 i_{2}^{U} \psi$, gives the rotor plane direction for the resulting two-parameter rotor (6.202). Note the bivector linear combination by the two angular coordinates ϕ, ψ where the ψ plane is rotated. The group of these $U_{\phi, \psi}$ is isomorphic to the $S U(2)$ group.
 Further here, it is worth noting that $\boldsymbol{i}_{1}=e^{-i_{3} \pi / 2} \boldsymbol{i}_{2}=1 / 2\left(1-\boldsymbol{i}_{3}\right) \boldsymbol{i}_{2}\left(1+\boldsymbol{i}_{3}\right)$, in that $U_{-1 / 2 \pi}=e^{-\boldsymbol{i}_{3} \pi / 4}=\sqrt{1 / 2}\left(1-\boldsymbol{i}_{3}\right)$, for the orthogonal bivector basis (6.203). - (For the intuition of the plane subjects look once again at Figure 6.1,t, etc.)
 © Jens Erfurt Andresen, M.Sc. NBI-UCPH, $-267-\quad$ Volume I, - Edition 2-2020-22, - Revision 6,

