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Now we will compare the Euler angles of the rotor (6.187) with the versor quaternion expression 
(6.136)   = = + + + , therefor we rewrite  (6.187) -  

(6.194) 

 = = ½ ½ ½ 3                                                            
     = (cos ½ + sin ½ ) (cos ½ + sin ½ ) (cos ½ + sin ½ )  
     =  cos ½ (cos ½ cos ½ sin ½ sin ½ )         
      + sin ½ (cos ½ cos ½ sin ½ sin ½ )   
      + sin ½ (sin ½ cos ½ cos ½ sin ½ ) 
      + cos ½ (sin ½ cos ½ + cos ½ sin ½ )  

 

We have the unitary versor quaternion coordinates: 

(6.195) 

=  cos ½  cos ½( + )
=  sin ½  cos ½( + )
=  sin ½  sin ½( )
=  cos ½ sin ½( + )

 

By this, we have specified the versor quaternion by the Euler angles, e.g., for case (6.145e) 
(6.196) = + + + =    ( + ) + ( + ) . 

We will not study these practice rotations in more detail for -space here but mention that versor 
quaternions are used a lot in computer graphics, robotics, flight, and space satellite management. 

6.4.6.2. The Other Euler Angle Sequence 
The same Euler angles parameters as used in (6.187) where instead of rotating in the entity  
reference system { , , } with duals =  is rotating the reference frame in two 
sequences: 
a. First, we choose the reference system as (6.179) with the primary rotation axis  in duality 

with the plane unit bivector =  direction. Around in this defining an arbitrary rotor  
 = ½    and calling its angle  for the outer Euler angle for the frame rotation to a note 
direction n = e =  as a new intermediary reference frame {n, e , 3}. 

b. Second, by the newly created plane direction  n= n dual to the intermediate node n.  
In that we define an arbitrary rotor   ½   and call its angle  for the tilting Euler 
angle of frame tilt rotation in this pqg-2direction  n plane,  is taken from the  axis 
tilting direction  plane to the direction  e3= e n, resulting in a new frame {n, e2

,,,,, e3, } 
dual to { , e3n, e3}. 

c. Third, in this new frame we have the rotation axis e3 with the dual transversal plane e3 
around which symmetry direction we define the third arbitrary rotor  ½ e   and call  
its angle  for the inner Euler angle, as the rotation in the entity  direction e3. 

In this frame scenario, we combine this sequence of the three 1-rotors (as used by Doran & 
Lasenby [18]p.51) to one unitary rotor operator , that can perform the total rotation 

(6.197) = = ½ e ½ n ½ . 
This resulting rotor is just the same as (6.187) used in (6.193) and (6.192) -  

(6.198) e =     and     = . 

As the reader may know there are other systems to interpret Euler angles relative to the axis. 
(The structure in (6.145a)-(6.145f) indicates some of the possibilities of rotation planes.) 
Anyway, in robotics, the axis is distributed and cannot necessarily be traded as one locality in a  

-space.  
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6.4.7. The Transversal Bivector Idea Dual to a 1-vecetor Foundation for Rotations 
Before we proceed, we have to be precise that a transversal bivector  BB = b = b is dual 
perpendicular orthogonal to its generating 1-vector b = + +   and possesses the 
same coordinates to its dual basis, that is  B = , + , +   =  + + . 

6.4.7.1. The two Orthogonal Rotors as Generators for a Local Entity 
Now we start with the idea of the Euler angles from(6.187)-(6.196) for the rotors. We choose for the 
second 1-rotor to rotate perpendicular by the second Euler angle   = 2   and achieve 

(6.199)   
½       ½ =  =  ½(1 )    = cos( 4) + 1 sin( 4) 

Where we have  cos( 4) = ½   and   sin( 4) = ½. 
This rotates the rotation axis 3 over in the rotation axis . 

(6.200) ½ 3 ½ =  ½(1 ) 3(1+ ) ½ =   ½(1 + 2 3) 3(1 + 3 2) =  2 

We tilt the 1-rotor   ½ 3     to be orthogonal to 1-rotor  ½  
       ½ ½  =      = ½ =   ½  
and have a set of two orthogonal 1-rotors  ½   and   ½  

It is very important to note that these angular quantities   and  are not additive commutative 
in that their qualities have different directions   ,  (refer to § 6.3.5.2 for multiplication). 
Anyway, we use it apparently as such in calculating the versor  coordinates from (6.195) -  

(6.201) 

= + ½ cos ½( + )
= ½ cos ½( + )
= ½ sin ½( )
= + ½ sin ½( + )

               = + + +  

where the trigonometric functions express this nonlinearity. 
Therefore, we instead will focus on the resulting 2-rotor of these two orthogonal 1-rotors 

(6.202)         = ,  =  ½ ½          ~ ½    OBS! 325 
Two plane directions generated from  and  are sufficient to describe the total direction of a 
physical entity  in -space, as we know from the mutual interconnectivity (6.123), (6.126) the 
third plane direction is implicit given 

(6.203) 1, , ,  |  
as the basis for the even geometric algebra ,  for a locality in -space, where the 
primary qualities are of even grades (pqg-0 and pqg-2). The three subject directions , ,  
will always intersect in just one geometric point of -space that will represent a centrum of the 
locality. The translation invariance of such three perpendicular plane objects will always ensure 
one centrum of locality for a physical entity  in -space. In § 6.1.3.4 we had first, that two 
inclining planes (E XI.De.6.) will intersect in a straight line. This line will intersect the third plane 
in just one autonomous point, it will be an origo for these three inclining planes. 

 
325 For this two-parameter rotor  ,   , for intuition you need to notice that the initial plane direction   as a subject is 

rotated by  as   = =  ½
 

½ = ,  so that the bivector = ½ +½  , gives the rotor plane 
direction for the resulting two-parameter rotor (6.202). Note the bivector linear combination by the two angular coordinates , , 
where the  plane is rotated. The group of these  ,   is isomorphic to the (2) group. 
Further here, it is worth noting that   =      = ½(1 ) (1+ ),   in that ½ = = ½(1 )  , 
for the orthogonal bivector basis (6.203).     – (For the intuition of the plane subjects look once again at Figure 6.1,t, etc.) 
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