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Figure 6. 17  Overview of a simple rotation by the three Euler angles in an orthogonal local frame: 0.   ~{ 1, 2, 3}. 
1. The rotation angle  of the reference oscillation for the entity  in the  =  plane.  
2. The tilting rotation angle  in the = 1 plane.  –   3. The start  rotated angle  to node  in the =  plane. 
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We endow the situation of entity  with the three principal directions given by the dextral 
orthonormal basis 1-vector { , , } in duality with the transversal bivector basis  { , , }. 
We associate the angular rotations to these principal directions. 
How does this rotation of entity  relate to the surroundings expressed as a frame of directions?  
An intuition of this as an orthonormal 1-vector frame {e1, e2, e3, } is displayed in Figure 6.17.  
We start with {e1, e2, e3, } = { , , } in the first picture Figure 6.17,0. 
For this regular rotation (6.184) we use the Euler angles as parameters: Displayed in Figure 6.17, 

1. First, we choose a primary rotation symmetry direction of the local entity ;  
call its unit bivector for  =  given by what we call its basis 1-vector ; around this, we 
define an arbitrary 1-rotor   ½ 3    and call its angle  for the inner Euler angle. 

2. Second, we shall choose a start direction in this plane by a basis vector  in duality  
with its basis bivector = ; in this plane define another arbitrary 1-rotor   ½    
and call its angle  for the tilting Euler angle.  – 321 

3. Third, around in the first symmetry direction  =   we define the third arbitrary 1-rotor 
 = ½    and call its angle  for the outer Euler angle. 

The theatre here is to combine these three 1-rotors to one unitary operator , which performs the 
rotation of the frame at the entity .  We make, this by the product322 of the rotors: 

(6.187)   ~   = = ½ ½ ½ 3 . 
Here , ,  does not commutate as described in § 6.3.5 and shown in Figure 6.14, and 
we remember that the written operators as concept principal act from left on right, as an operator 
on the operand.  (Refer to written functional principle = ( ) =   = ( ) = .) 
The simple Hermitian conjugated operates from right to left position and are each rotor reversed 

(6.188)   ~   = = ½ 3 ½ ½  
We look at the operation, we call the Euler angle extrinsic rotation in three sequential steps: 

The rotation of frame { 1, 2, 3} {e1, e2, e3, } Alternatively, rotation of the entity  

First, we rotate around  in 3 by the inner rotor  =  ½ 3 =  ½ 3 :   
(6.189) e =  =   

Second, we rotate around 1 in  by the tilt rotor  =  ½ =  ½  : 
(6.190) e =  =   

Third, we rotate once again around  by the outer rotor  =  ½ =  ½  : 
(6.191) e = =           = =   

This three-step sequence of rotor rotations shown in Figure 6.17, 0  1  2  3  result in a total 
regular rotation, with an equivalence to the rotation (6.184) of the entity. 

(6.192) =          ~     =     =   ½ ½  =        =  ( ) . 
The total regular rotation of the frame is 

(6.193)  ee =         ~     =   =  ½ ½  =    =  ( ) . 
This review of Euler angles is inspired by Hestenes [10]p.289-292,323   like [19]p.152.324 

 
321 The last basis vector 2 is implicitly given through = 3 1 by the two others, as 2 = = 3 1, and we do not use it for the 

Euler angles in this example. We only use it here for the intuition to define the planes   2 1 and   3 2. 
322 In the context of this book, this  is a multivector product.  – In the quaternion picture, we call this versor . 
323 Note Hestenes’s canonical forms for linear operators. (The reader should study as much as possible of his book [10].) 
324 In this book, we don’t follow the idea of a rigid body as in classical mechanics e.g., Goldstein [19], but only the form of  space. 
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