Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

Figure 6.17 Overview of a simple rotation by the three Euler angles in an orthogonal local frame: $0 . \Psi \sim\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ The rotation angle ψ of the reference oscillation for the entity Ψ in the $\boldsymbol{i}_{3}=\boldsymbol{i} \boldsymbol{\sigma}_{3}$ plane
2. The tilting rotation angle θ in the $\boldsymbol{i}_{1}=\boldsymbol{i} \sigma_{1}$ plane. - 3. The start σ_{1} rotated angle ϕ to node n in the $\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}$ plane
(C) Jens Erfurt Andresen, M.Sc. Physics, Denmark

For quotation reference use: ISBN-13: 978-8797246931

We endow the situation of entity Ψ with the three principal directions given by the dextral orthonormal basis 1 -vector $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ in duality with the transversal bivector basis $\left\{\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right\}$ We associate the angular rotations to these principal directions.
How does this rotation of entity Ψ relate to the surroundings expressed as a frame of directions? An intuition of this as an orthonormal 1-vector frame $\left\{e_{1}, e_{2}, e_{3},\right\}$ is displayed in Figure 6.17 We start with $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3},\right\}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ in the first picture Figure 6.17,0.
For this regular rotation (6.184) we use the Euler angles as parameters: Displayed in Figure 6.17

1. First, we choose a primary rotation symmetry direction of the local entity Ψ
call its unit bivector for $\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}$ given by what we call its basis 1-vector σ_{3}; around this, we define an arbitrary 1-rotor $U_{\psi}:=e^{1 / i_{3} \psi}$ and call its angle ψ for the inner Euler angle
2. Second, we shall choose a start direction in this plane by a basis vector σ_{1} in duality with its basis bivector $\boldsymbol{i}_{1}=\boldsymbol{i} \boldsymbol{\sigma}_{1}$; in this plane define another arbitrary 1-rotor $U_{\theta}:=e^{1 / 2 \boldsymbol{i}_{1} \theta}$ and call its angle θ for the tilting Euler angle. - ${ }^{321}$
3. Third, around in the first symmetry direction $\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}$ we define the third arbitrary 1-rotor $U_{\phi}=e^{1 / 2 i_{3} \phi}$ and call its angle ϕ for the outer Euler angle.
The theatre here is to combine these three 1-rotors to one unitary operator U, which performs the rotation of the frame at the entity Ψ. We make, this by the product ${ }^{322}$ of the rotors:
(6.187) $\quad \hat{Q} \sim U=U_{\phi} U_{\theta} U_{\psi}=e^{1 / 2 i_{3} \phi} e^{1 / 2 i_{1} \theta} e^{1 / 2 i_{3} \psi}$

Here $U_{\phi}, U_{\theta}, U_{\psi}$ does not commutate as described in $\S 6.3 .5$ and shown in Figure 6.14, and we remember that the written operators as concept principal act from left on right, as an operator on the operand. (Refer to written functional principle $f \circ g=f(g)=f g \not \approx g f=g(f)=g \circ f$.) The simple Hermitian conjugated operates from right to left position and are each rotor reversed
$\widetilde{\widehat{Q}} \sim U^{\dagger}=U_{\psi}^{\dagger} U_{\theta}^{\dagger} U_{\phi}^{\dagger}=e^{-1 / 2 i_{3} \psi} e^{-1 / 2 i_{1} \theta} e^{-1 / 2 i_{3} \phi}$
We look at the operation, we call the Euler angle extrinsic rotation in three sequential steps:
The rotation of frame $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\} \rightarrow\left\{\mathbf{e}_{1}, \mathrm{e}_{2}, \mathbf{e}_{3},\right\}$ Alternatively, rotation of the entity Ψ
First, we rotate around σ_{3} in \boldsymbol{i}_{3} by the inner rotor $U_{\psi}=e^{1 / 2 i_{3} \psi}=e^{1 / 2 i \psi \sigma_{3}}$

$$
\mathbf{e}_{k}^{\prime}=U_{\psi}^{\dagger} \boldsymbol{\sigma}_{k} U_{\psi}
$$

$$
\Psi_{1}=U_{\psi} \Psi U_{\psi}^{\dagger}
$$

Second, we rotate around σ_{1} in \boldsymbol{i}_{1} by the tilt rotor $U_{\theta}=e^{1 / 2 \boldsymbol{i}_{1} \theta}=e^{1 / 2 \boldsymbol{i} \theta \boldsymbol{\sigma}_{1}}$

$$
\Psi_{2}=U_{\theta} U_{\psi} \Psi U_{\psi}^{\dagger} U_{\theta}^{\dagger}
$$

Third, we rotate once again around σ_{3} by the outer rotor $U_{\phi}=e^{1 / 2 i_{3} \phi}=e^{1 / 2 i \phi \sigma_{3}}$

$$
\begin{equation*}
\mathbf{e}_{k}=U_{\phi}^{\dagger} U_{\theta}^{\dagger} U_{\psi}^{\dagger} \sigma_{k} U_{\psi} U_{\theta} U_{\phi}=U^{\dagger} \sigma_{k} U \tag{6.191}
\end{equation*}
$$

$$
\Psi_{3}=U \Psi U^{\dagger}=U_{\phi} U_{\theta} U_{\psi} \Psi U_{\psi}^{\dagger} U_{\theta}^{\dagger} U_{\phi}^{\dagger}
$$

This three-step sequence of rotor rotations shown in Figure 6.17, $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$ result in a tota regular rotation, with an equivalence to the rotation (6.184) of the entity.
(6.192) $\Psi_{3}=U \Psi U^{\dagger} \sim \mathcal{R}_{\mathrm{n}} \Psi=U_{\mathbf{i n}} \Psi U_{i \mathbf{n}}^{\dagger}=e^{i \mathbf{n} 1 / 2 \varphi} \Psi e^{-i \mathbf{n} 1 / 2 \varphi}=e^{i \mathbf{n} \varphi} \Psi=\left(U_{\mathbf{i n}}\right)^{2} \Psi$.

The total regular rotation of the frame is
$\mathbf{e}_{k}=U^{\dagger} \boldsymbol{\sigma}_{k} U \sim \widetilde{\widetilde{\mathcal{R}_{\mathbf{n}}}} \boldsymbol{\sigma}_{k}=U_{\mathbf{i n}}^{\dagger} \boldsymbol{\sigma}_{k} U_{\mathbf{i n}}=e^{-i \mathbf{n}^{1} / 2 \varphi} \boldsymbol{\sigma}_{k} e^{i \mathbf{n}^{1} / 2 \varphi}=e^{-i \mathbf{n} \varphi} \boldsymbol{\sigma}_{k}=\left(U_{i \mathbf{n}}^{\dagger}\right)^{2} \sigma_{k}$. This review of Euler angles is inspired by Hestenes [10]p.289-292, ${ }^{323}$ like [19]p.152. ${ }^{324}$
${ }^{321}$ The last basis vector $\boldsymbol{\sigma}_{2}$ is implicitly given through $\boldsymbol{i}_{2}=\boldsymbol{i}_{3} \boldsymbol{i}_{1}$ by the two others, as $\boldsymbol{\sigma}_{2}=-\boldsymbol{i} \boldsymbol{i}_{2}=\boldsymbol{i} \boldsymbol{\sigma}_{3} \boldsymbol{\sigma}_{1}$, and we do not use it for the Euler angles in this example. We only use it here for the intuition to define the planes $\boldsymbol{i}_{3} \equiv \sigma_{2} \sigma_{1}$ and $\boldsymbol{i}_{1} \equiv \sigma_{3} \sigma_{2}$
${ }^{322}$ In the context of this book, this U is a multivector product. - In the quaternion picture, we call this versor Q.
${ }^{233}$ Note Hestenes's canonical forms for linear operators. (The reader should study as much as possible of his book [10].)
${ }^{32}$ In this book, we don't follow the idea of a rigid body as in classical mechanics e.g., Goldstein [19], but only the form of \mathcal{Z} space.
C Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-265-\quad$ Volume I, - Edition 2-2020-22, - Revision $6, \quad$ December 2022

For quotation reference use: ISBN-13: 978-8797246931

