

There are all even elements of $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R}) \sim \mathcal{G}_{3}^{+}(\mathbb{R}) \leftrightarrow S U(2)$.
The scalar components in (6.178) both scale the elements and stand inside the quaternion group as elements of their basic form (6.131)

$$
Q=q_{0}+q_{k} \boldsymbol{i}_{k} \in \mathbb{H}, \quad k=1,2,3,
$$

where we know

- $\forall q_{0} \in \mathbb{R} \quad$ represent the real scalar field: s, and
- $q_{k} \boldsymbol{i}_{k}=\sum_{k=1}^{3}\left(q_{k} \boldsymbol{i}_{k}\right)$ for $\forall q_{k} \in \mathbb{R} \quad$ represent the bivector field:
B.

These two qualities represent a spinor of the form: A scalar plus a bivector, $s+\mathrm{B}$
What do oscillating quaternion spinors do?

- One 1-spinor oscillator can represent or endow an angular momentum direction.
- Another can represent or endow the precession of the angular momentum direction

Both cases are dependent on the idea of angular qualities that are parameterised by phase angular arguments as real quantities that change the directions.
The first change 1 -vector directions in a bivector plane,
the second change in the direction of that plane.
In all these form a quaternion 2 -spinor.

Therefore, we for these arks:
What impact does the angular concept have on the intuition of a 3 -space idea? We start with a look at the Euler angles for rotation in a standard frame system

6.4.6. Euler Angles for a Rotor in 3 -space

We return to the mixed basis (6.119) for the geometric algebra of 3 -space unfolded as
(6.179) $\left\{1, \sigma_{1}, \sigma_{2}, \sigma_{3}, \boldsymbol{i}_{1}:=\sigma_{3} \sigma_{2}=\boldsymbol{i} \sigma_{1}=\boldsymbol{i}_{2} \boldsymbol{i}_{3}, \boldsymbol{i}_{2}:=\sigma_{1} \sigma_{3}=\boldsymbol{i} \sigma_{2}=\boldsymbol{i}_{3} \boldsymbol{i}_{1}, \boldsymbol{i}_{3}:=\sigma_{2} \sigma_{1}=\boldsymbol{i} \sigma_{3}=\boldsymbol{i}_{1} \boldsymbol{i}_{2}, \boldsymbol{i}=\sigma_{3} \sigma_{2} \sigma_{1}\right\}$ We have in (6.145) from (6.144) for 3 -space introduced the rotor for the spherical locality

$$
\begin{equation*}
\text { (6.180) } \quad U_{i \mathrm{n}}=e^{\left(n_{1} i_{1}+n_{2} i_{2}+n_{3} i_{3}\right)^{1 / 2} \varphi}=e^{i \mathrm{n}^{1} / 2 \varphi} \tag{319}
\end{equation*}
$$

with the 1 -vector direction $\mathbf{n}=n_{1} \sigma_{1}+n_{2} \sigma_{2}+n_{3} \sigma_{3}$ with the transversal bivector direction

(6.181) $\quad \boldsymbol{i}_{\mathrm{n}}=\boldsymbol{i n}=n_{1} \boldsymbol{i}_{1}+n_{2} \boldsymbol{i}_{2}+n_{3} \boldsymbol{i}_{3}$.

We now intuit a physical entity Ψ in 3 -space where all the qualities
$\boldsymbol{p q g}-0, p q \boldsymbol{g}-1, p q \boldsymbol{g}-2$, and $\boldsymbol{p q g}-3$ are participating.
We will see what happens when we rotate this.
We have in (5.193) formulated the general canonical form for any orthogonal transformation (6.182) $\quad \underline{\mathcal{R}} \mathbf{x}=U \mathbf{x} U^{\dagger}$,
that applies to all (multi) vectors in space \mathfrak{G}, also outside the rotor U plane direction. See Figure 6.12 I.e., for all 1-vectors objects $\mathrm{x}=x_{1} \sigma_{1}+x_{2} \sigma_{2}+x_{3} \sigma_{3}$ and thereby all bivectors subjects ${ }^{320}$ $\mathrm{X}=\beta_{1} \boldsymbol{i}_{1},+\beta_{2} \boldsymbol{i}_{2},+\beta_{3} \boldsymbol{i}_{3}$ in entire 3 -space of physics, for a regular rotation we write,

$$
\text { (6.183) } \quad \mathrm{y}=\underline{\mathcal{R}} \mathrm{x}=U \mathrm{x} U^{\dagger}, \quad \mathrm{Y}=\underline{\mathcal{R}} \mathrm{X}=U \mathrm{X} U^{\dagger} \quad \text { or } \quad \Psi^{\prime}=\underline{\mathcal{R}} \Psi=U \Psi U^{\dagger} .
$$

The scalars are rotation invariant and pseudoscalars are invariant for regular rotations. The rotation performed by the rotor (6.180) is

$$
\underline{\mathcal{R}}_{\mathrm{n}} \Psi=U_{i \mathrm{n}} \Psi U_{i \mathrm{n}}^{\dagger}=e^{i \mathrm{n}^{1} / 2 \varphi} \Psi e^{-i \mathrm{n}^{1} / 2 \varphi}=e^{i \mathrm{n} \varphi} \Psi=e^{\left(n_{1} i_{1}+n_{2} i_{2}+n_{3} i_{3}\right) \varphi} \Psi
$$

rotated around one 1 -vector \mathbf{n} in plane $\boldsymbol{i n}$. - Here we use that one angular rotor anticommute through any entity Ψ by its own reverse in the same plane direction, refer (5.193), (6.70).
What happens when we rotate through two or more independent planes parametrised by their separate angular (development) parameters as demanded above?
One circle plane rotation has the normal 1 -vector n as its turning axis direction
Rotation by another independent plane circular rotation will change the direction of this n .
This problem we illustrate between two standard frame orthonormal bases

For the two reverse transformations, we have due to (6.92) and (6.95) the canonical forms

$$
\boldsymbol{\sigma}_{j}=U \mathbf{e}_{j} U^{\dagger} \quad \text { and } \quad \mathbf{e}_{k}=U^{\dagger} \boldsymbol{\sigma}_{k} U
$$

These 1-vectors we use as an object for intuition in Figure 6.17 of an entity Ψ subject:
${ }^{319}$ Don't trust the rewriting of $(6.180) \not \approx e^{i_{1} n_{1} 1 / 2 \varphi} e^{i_{2} n_{2}{ }^{1} / 2 \varphi} e^{i_{3} n_{3}{ }^{3} / 2 \varphi}$ due to, the three operators existing in independent planes ${ }^{325}$
The 1-vector object we intuit as an arrow from one point to another, while the bivector stays as a plane amoeba subject.

C	Jens Erfurt Andresen, M.Sc. NBI-UCPH,	$-263-$	Volume I, - Edition 2-2020-22, - Revision 6,	December 2022

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

