$i_1(\frac{1}{2}\psi) = e_1\sigma_3$

 u_1/ρ

Figure 6.16 The turned plane unit object $i_{\perp}(\frac{1}{2}\psi)$. ∇

CS S

search

on

th

 $\overline{\mathbf{O}}$

2 C

O

riori

of

Phys10

CS

en

 \mathbf{v}

ndr

SÖ.

Edition

N

020-

 $\frac{122}{2}$

December 2022

Geometric - II. The Geometry of Physics – 6. The Natural Space of Physics – 6.4. The Geometric Clifford Algebra – the orthogonal *direction* to the first by multiplying by the third *directional* bivector i_i . To simplify this complex interconnectivity, we recall $\mathbf{i}_i = \mathbf{i}_k \mathbf{i}_l$ (for $l \neq j \neq k \neq l \leftarrow 1,2,3$, permutated). E.g. as (6.126) for which we choose a local reference frame axis σ_3 with the transversal plane $\mathbf{i}_3 = \mathbf{i} \mathbf{\sigma}_3 = \mathbf{i}_1 \mathbf{i}_2 = \mathbf{\sigma}_2 \mathbf{\sigma}_1$. Hereby we see that (6.145f) is a case. Then from the spinor angles in Critique this first plane i_3 , that gives the two driving 1-spinors $Q_3 = (u_0 + u_3 i_3) = \rho(\cos \frac{1}{2}\phi + i_3 \sin \frac{1}{2}\phi) = \rho e^{+i_3 \frac{1}{2}\phi} = \rho U_3, \quad \rho = \sqrt{u_0^2 + u_3^2} \le 1, \quad \text{(Figure 6.15)}$ (6.146) $Q_1 = (u_2 - u_1 i_3) = \rho(\cos \frac{1}{2}\psi - i_3 \sin \frac{1}{2}\psi) = \rho e^{-i_3 \frac{1}{2}\psi} = \rho U_1^{\dagger}, \quad \rho = \sqrt{u_1^2 + u_2^2} \le 1.$ (Figure 6.16) (6.147) where we introduce the two angles in that plane of Pure $\phi = 2\cos^{-1}(u_0/\varrho) = 2\sin^{-1}(u_3/\varrho),$ hence $u_0 = \rho \cos \frac{1}{2}\phi$, (6.148) $u_3 = \rho \sin \frac{1}{2}\phi$ and $\psi = 2\cos^{-1}(u_2/\rho) = 2\sin^{-1}(u_1/\rho),$ hence $u_2 = \rho \cos \frac{1}{2}\psi$, (6.149) $u_1 = \rho \sin \frac{1}{2} \psi$ so that $\varrho^2 + \rho^2 = \varrho^2 \cos^2 \frac{1}{2} \phi + \varrho^2 \sin^2 \frac{1}{2} \phi + \rho^2 \cos^2 \frac{1}{2} \psi + \rho^2 \sin^2 \frac{1}{2} \psi = u_0^2 + u_1^2 + u_1^2 + u_2^2 = 1,$ (6.150)Mathematical Reasoning where the two modulus amplitudes ρ and ρ merge to unity. We have here used the ideal circular form as the 1-spinors (6.146) and (6.147) **σ**₂ You could argue to use Kepler-ellipse cause of the four degrees of freedom allow this inside the unitary condition (6.137), but here we don't consider/ u_3/ϱ a central force field with any particle, planet, or any distribution of individual particles. Here we are only concerned about the symmetries between plane *directions* and their relative *quantitative* magnitudes in u_0/ρ our foundation of any indivisible *entity* Ψ ontological in 3-space. This pure angular area view of (6.147) as a circle sector in the transversal plane to the 1-vector σ_3 for the intuition is insufficient. We rewrite the last term in (6.145f) and further the same for (6.145e)Figure 6.15 1-rotor U_3 $Q_1 \mathbf{i}_2 = (u_2 - u_1 \mathbf{i}_3) \mathbf{i}_2$ for spinor $Q_3 = \varrho U_3$. (6.151) $= \rho (\cos^{1/2}\psi - \mathbf{i}_{3}\sin^{1/2}\psi)\mathbf{i}_{2} = u_{2}\mathbf{i}_{2} + u_{1}\mathbf{i}_{1} = u_{2}\sigma_{1}\sigma_{3} - u_{1}\sigma_{2}\sigma_{3} = (u_{2}\sigma_{1} - u_{1}\sigma_{2})\sigma_{3}$ $= \rho \left((\cos \frac{1}{2}\psi) \boldsymbol{\sigma}_1 - (\sin \frac{1}{2}\psi) \boldsymbol{\sigma}_2 \right) \boldsymbol{\sigma}_3 = \rho \left(\boldsymbol{i}_2 \cos \frac{1}{2}\psi + \boldsymbol{i}_1 \sin \frac{1}{2}\psi \right)$ $= \rho \left(\sin \frac{1}{2} \psi + \frac{i_3}{2} \cos \frac{1}{2} \psi \right) i_1 = (u_1 + u_2 \frac{i_3}{2}) i_1 = Q_2 i_1.$

We see that the unit 1-vector term (as a factor in the first part third line)

(6.152)
$$\mathbf{e}_{1} = \hat{\mathbf{r}} = \left((\cos \frac{1}{2}\psi)\boldsymbol{\sigma}_{1} - (\sin \frac{1}{2}\psi)\boldsymbol{\sigma}_{2} \right) \\ = \cos(-\frac{1}{2}\psi)\boldsymbol{\sigma}_{1} + \sin(-\frac{1}{2}\psi)\boldsymbol{\sigma}_{2},$$

look like the unit circle in Cartesian coordinates in the plane of $\{\sigma_1, \sigma_2\}$ retrograde orientated by $-\frac{1}{2}\psi$ (clockwise). But the right operation with σ_3 turns the subject into the space outside this plane to exist in the plane supported by the unit bivector

(6.153)
$$\mathbf{i}_{\perp}(\frac{1}{2}\psi) = \mathbf{e}_{1}\mathbf{\sigma}_{3} = \mathbf{i}_{2}U_{1} = U_{1}^{\dagger}\mathbf{i}_{2} = Q_{1}\mathbf{i}_{2}/\rho = Q_{2}\mathbf{i}_{1}/\rho,$$

rotating with $\frac{1}{2}\psi$ by $U_{1}^{\dagger} = e^{-\mathbf{i}_{3}\frac{1}{2}\psi}$ as displayed in Figure 6.16.
The expression (6.151) concerns two of the four quaternion coordin

oncerns two of the four quaternion coordinates in (6.145)

154)
$$Q_1 \mathbf{i}_2 = Q_2 \mathbf{i}_1 = \rho(\mathbf{i}_2 \cos \frac{1}{2}\psi + \mathbf{i}_1 \sin \frac{1}{2}\psi) = +u_1 \mathbf{i}_1 + u_2 \mathbf{i}_2 = \rho \mathbf{i}_{\perp}(\frac{1}{2}\psi) = \mathbf{B}(\frac{1}{2}\psi) = \rho e^{-\mathbf{i}_3\frac{1}{2}\psi}\mathbf{i}_2.$$

This linear combination of the unit (orthonormal) bivector basis $\{\mathbf{i}_1, \mathbf{i}_2\}$ results in the turning
bivector $\mathbf{B}(\frac{1}{2}\psi) = \rho \mathbf{i}_{\perp}(\frac{1}{2}\psi) = \rho \mathbf{e}_1 \mathbf{\sigma}_3$ scaled by ρ in this plane *direction* $\mathbf{i}_{\perp}(\frac{1}{2}\psi)$, see Figure 6.16.
To intuit the foundation for this unit bivector basis $\{\mathbf{i}_1 = \mathbf{\sigma}_3 \mathbf{\sigma}_2, \mathbf{i}_2 = \mathbf{\sigma}_1 \mathbf{\sigma}_3\}$ compare with Figure 6.11.
The idea of Figure 6.16 is to see the object bivector $\mathbf{i}_{\perp} = \mathbf{e}_1 \mathbf{\sigma}_3$ as fixed in the external lab frame
 $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 = \mathbf{\sigma}_3\}$ and the autonomy frame $\{\mathbf{\sigma}_1, \mathbf{\sigma}_2, \mathbf{\sigma}_3\}$ for a physical *entity* Ψ spinning with the
oscillator rotor $U_1 = e^{\mathbf{i}_3\frac{1}{2}\psi}$: E.g., the three $\mathbf{\sigma}_j(\frac{1}{2}\psi) = e^{\mathbf{i}_3\frac{1}{2}\psi}\mathbf{e}_j$ relative to the laboratory *directions*.

C Jens Erfurt Andresen, M.Sc. Physics, Denmark -258Research on the a priori of Physics

For quotation reference use: ISBN-13: 978-8797246931

- 6.4.4. The Versor as a Direction 2-Rotor - 6.4.4.3 The Four Real Scalar Coordinates for the Versor Quaternion Direction -

Interpreted as oscillators the two 1-spinors Q_1 and Q_2 are interconnected. Reason (6.151),

(6.155) $Q_1 \mathbf{i}_2 = Q_2 \mathbf{i}_1 \quad \Leftrightarrow \quad Q_2 = Q_1 \mathbf{i}_3,$ We see that the three oscillators $Q_1 \rightarrow Q_1 \mathbf{i}_2$, $Q_2 \rightarrow Q_2 \mathbf{i}_1$ and Q_3 are orthogonal, and that one Q_3 is an angular phase independent of the two others. These two then are mutually interconnected by the chosen *direction* i_3 (6.155) with the phase angle dependency as an example for our intuition. We will look further into the idea of this fundamental issue on the next pages 259-308.

We will now interpret the identity $\mathbf{i}_1 = \mathbf{i}_2 \mathbf{i}_3 = \mathbf{i}_3 (-\mathbf{i}_2)$ as a rotation of the plane bivector \mathbf{i}_3 into the plane bivector \mathbf{i}_1 by the left operator \mathbf{i}_2 or the right operation by $-\mathbf{i}_2$. In the same way, we interpret the identity $\mathbf{i}_2 = \mathbf{i}_3 \mathbf{i}_1 = -\mathbf{i}_1 \mathbf{i}_3$ as a rotation of the plane bivector \mathbf{i}_3 into the plane bivector \mathbf{i}_2 by the left operator $-\mathbf{i}_1$ or the right operation by \mathbf{i}_1 . Here we interpret these operators as a perpendicular rotation by rotors in the same planes

(6.156)
$$\begin{array}{l} \pm \mathbf{i}_2 = e^{\pm i_2 \pi/2} = \mathbf{i}_2 \sin(\pm \pi/2), & \text{in} \\ \pm \mathbf{i}_1 = e^{\pm i_1 \pi/2} = \mathbf{i}_1 \sin(\pm \pi/2), & \text{in} \\ \text{To make a perpendicular regular rotation along}^{315} \text{ thes} \end{array}$$

(6.158)
$$U_{i_2} = e^{i_2 \frac{1}{2}\pi/2} = e^{i_2 \pi/4} = \cos(\pi/4) + i_2 \sin(\pi/4)$$

(6.159)
$$U_{-i_1} = e^{-i_1\pi/4} = \cos(-\pi/4) + i_1\sin(-\pi/4) = \sqrt{\frac{1}{2}}(1-i_1).$$

With the canonical rotations by these, we tilt the plane bivector i_3 direction into the i_1 direction

(6.160)
$$\mathbf{i}_3 \rightarrow U_{\mathbf{i}_2} \mathbf{i}_3 U_{\mathbf{i}_2}^{\dagger} = \sqrt{\frac{1}{2}} (1 + \mathbf{i}_2) \mathbf{i}_3 (1 - \mathbf{i}_2) \sqrt{\frac{1}{2}} =$$

and tilt the plane bivector *direction* \mathbf{i}_3 into the plane bivector \mathbf{i}_2 *direction* by a U(1) 1-rotor

$$(6.161) \quad \mathbf{i}_{3} \to U_{-\mathbf{i}_{1}} \mathbf{i}_{3} U_{-\mathbf{i}_{1}}^{\dagger} = \sqrt{\frac{1}{2}} (1 - \mathbf{i}_{1}) \mathbf{i}_{3} (1 + \mathbf{i}_{1}) \sqrt{\frac{1}{2}} = \mathbf{i}_{2} = -\mathbf{i}_{1} \mathbf{i}_{3} = \mathbf{i}_{3} \mathbf{i}_{1}, \qquad U_{-\mathbf{i}_{1}}^{2} = -\mathbf{i}_{1}.$$

By this mapping perpendicular to the reference 1-spinor Q_3 in the i_3 plane, we from Q_1 (6.147) and (6.145f) define its orthogonal 1-spinor³¹⁶ turned by $\mathbf{i}_2 = e^{\mathbf{i}_2 \pi/2}$

(6.162)
$$Q_1^{\perp} = U_{i_2} Q_1 U_{i_2}^{\dagger} = (u_2 - u_1 i_1) = \rho(\cos \frac{1}{2}\psi - i_1)$$

And from Q_2 we get the other perpendicular 1-spinor from (6.145e) turned $-i_1 = e^{-i_1\pi/2}$

(6.163)
$$Q_2^{\perp} = U_{-i_1} Q_2 U_{-i_1}^{\top} = (u_1 + u_2 i_2) = \rho(\sin \frac{1}{2}\psi + i_2)$$

(by the reason) $= -i_2 \rho(\cos \frac{1}{2}\psi + i_2)$

where we introduce $\phi_2 = \psi - \pi$ with a rotation phase angle shift $-\frac{1}{2}\pi$ as a factor $-\frac{i}{2} = e^{-\frac{i}{2}\pi/2}$ in the same plane as the 1-spinor Q_2^{\perp} (where they commute). (By \perp we mean perpendicular to Q_3)

These two 1-spinors (6.162) and (6.163) are perpendicular to each other $O_1^{\perp} \perp O_2^{\perp}$ just as the transversal bivector planes $i_1 \perp i_2$ are orthogonal $i_1 \cdot i_2 = 0$. It is obvious that these two simple plane 1-spinors Q_1^{\perp} and Q_2^{\perp} represent circle oscillators by the synchronous development parameters $\phi_2 + \pi = \psi \sim \omega t$ in an interconnected relationship to the plane *direction* $\mathbf{i}_3 = \mathbf{i}_0 \mathbf{\sigma}_3 = \mathbf{i}_1 \mathbf{i}_2 = \mathbf{\sigma}_2 \mathbf{\sigma}_1$ transversal to the external lab *direction* $\mathbf{\sigma}_3 := \|\mathbf{e}_3\|$

- A extrapolation to some *direction* components of oscillating 'wavefunctions': When we later will consider these 1-spinors as synchronous circle oscillators, we can imagine some phase shift between three oscillating 1-spinors Q_3 , Q_2^{\perp} , Q_1^{\perp} joined with the three quaternion basis plane *directions* i_1, i_2, i_3 . A picture of this is, that we have three orthogonal 1-spinors:

¹⁵ We have to consider the idea of the plane *directions* $i_2 \equiv \sigma_1 \sigma_3$ and $i_1 \equiv \sigma_3 \sigma_2$ as translation invariant subjects over the entire 3 space of some intuited plane objects $\{\sigma_3, \sigma_1\}$ and $\{\sigma_2, \sigma_3\}$ that we use for our distinction of the *directions*. ³¹⁶ We here remember that these (trigonometric) scalars u_1, u_2 are invariant under rotations. The *direction* $i_3 \rightarrow i_1$ chance.

© Jens Erfurt Andresen, M.Sc. NBI-UCPH,

-259

For quotation reference use: ISBN-13: 978-8797246931

(6.

by right multiplying the first equation with $-i_1$.

the plane, spanned from $\{\mathbf{i}_2\} \sim \{\mathbf{\sigma}_3, \mathbf{\sigma}_1\}$. the plane, spanned from $\{i_1\} \sim \{\sigma_2, \sigma_3\}$. se planes we invent the rotors

 $(4) = \sqrt{\frac{1}{2}(1+\mathbf{i}_2)}.$

 $= i_2 i_3 = i_3 (-i_2), \qquad U_{i_2}^2 = i_2.$

 $i_1 \sin \frac{1}{2}\psi = \rho e^{-i_1 \frac{1}{2}\psi}.$

 $\rho(\cos \frac{1}{2}\phi_{2} + i_{2}\sin \frac{1}{2}\phi_{2}) = \rho(\cos \frac{1}{2}\phi_{2} + i_{2}\sin \frac{1}{2}\phi_{2})$ $i_{2}\sin(1/2\psi) = \rho e^{-i_{2}\pi/2} e^{i_{2}t/2\psi} = \rho e^{i_{2}t/2\phi_{2}}$

Edition 2 – 2020-22 – Revision 6