Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931
the orthogonal direction to the first by multiplying by the third directional bivector \boldsymbol{i}_{j}.
To simplify this complex interconnectivity, we recall $\boldsymbol{i}_{j}=\boldsymbol{i}_{k} \boldsymbol{i}_{l}$, (for $l \neq j \neq k \neq l \leftarrow 1,2,3$, permutated) E.g. as (6.126) for which we choose a local reference frame axis σ_{3} with the transversal plane $\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}=\boldsymbol{i}_{1} \boldsymbol{i}_{2}=\sigma_{2} \sigma_{1}$. Hereby we see that (6.145 f) is a case. Then from the spinor angles in this first plane \boldsymbol{i}_{3}, that gives the two driving 1 -spinors
(6.146) $\quad Q_{3}=\left(u_{0}+u_{3} i_{3}\right)=\varrho\left(\cos ^{1} / 2 \phi+i_{3} \sin ^{1} 1 / 2 \phi\right)=\varrho e^{+i_{3} \frac{1}{2} \phi}=\varrho U_{3}, \quad \varrho=\sqrt{u_{0}^{2}+u_{3}^{2}} \leq 1, \quad$ (Figure 6.15)
(6.147) $\quad Q_{1}=\left(u_{2}-u_{1} i_{3}\right)=\rho\left(\cos 1 / 2 \psi-i_{3} \sin 1 / 2 \psi\right)=\rho e^{-i_{3} \frac{1}{2} \psi}=\rho U_{1}^{\dagger}, \quad \rho=\sqrt{u_{1}^{2}+u_{2}^{2}} \leq 1$. (Figure 6.16) where we introduce the two angles in that plane
(6.148) $\quad \phi=2 \cos ^{-1}\left(u_{0} / \varrho\right)=2 \sin ^{-1}\left(u_{3} / \varrho\right), \quad$ hence $\quad u_{0}=\varrho \cos 1 / 2 \phi, \quad u_{3}=\varrho \sin 1 / 2 \phi \quad$ and
(6.149) $\quad \psi=2 \cos ^{-1}\left(u_{2} / \rho\right)=2 \sin ^{-1}\left(u_{1} / \rho\right), \quad$ hence $\quad u_{2}=\rho \cos ^{1} / 2 \psi, \quad u_{1}=\rho \sin \frac{1}{2} \psi, \quad$ so that
(6.150) $\varrho^{2}+\rho^{2}=\varrho^{2} \cos ^{2} 1 / 2 \phi+\varrho^{2} \sin ^{2} 1 / 2 \phi+\rho^{2} \cos ^{2} 1 / 2 \psi+\rho^{2} \sin ^{2} 1 / 2 \psi=u_{0}^{2}+u_{3}^{2}+u_{1}^{2}+u_{2}^{2}=1$, where the two modulus amplitudes ϱ and ρ merge to unity
We have here used the ideal circular form as the 1 -spinors (6.146) and (6.147) You could argue to use Kepler-ellipse cause of the four degrees of freedom allow this inside the unitary condition (6.137), but here we don't consider a central force field with any particle, planet, or any distribution of individual particles. Here we are only concerned about the symmetries between plane directions and their relative quantitative magnitudes in our foundation of any indivisible entity Ψ ontological in \mathcal{Z}-space.
This pure angular area view of (6.147) as a circle sector in the
transversal plane to the 1 -vector σ_{3} for the intuition is insufficient.
We rewrite the last term in (6.145f) and further the same for (6.145e)
(6.151) $\quad Q_{1} \boldsymbol{i}_{2}=\left(u_{2}-u_{1} \boldsymbol{i}_{3}\right) \boldsymbol{i}_{2}$

$$
\begin{aligned}
& =\rho\left(\cos 1_{1}^{2} \psi-\boldsymbol{i}_{3} \sin 1 / 2 \psi\right) \boldsymbol{i}_{2}=u_{2} \boldsymbol{i}_{2}+u_{1} \boldsymbol{i}_{1}=u_{2} \sigma_{1} \sigma_{3}-u_{1} \sigma_{2} \sigma_{3}=\left(u_{2} \sigma_{1}-u_{1} \sigma_{2}\right) \sigma_{3} \\
& =\rho\left((\cos 1 / 2 \psi) \boldsymbol{\sigma}_{1}-(\sin 1 / 2 \psi) \sigma_{2}\right) \sigma_{3}=\rho\left(\boldsymbol{i}_{2} \cos 1 / 2 \psi+\boldsymbol{i}_{1} \sin 1 / 2 \psi\right)
\end{aligned}
$$

$$
=\rho\left(\sin 1 / 2 \psi+\boldsymbol{i}_{3} \cos 1 / 2 \psi\right) \boldsymbol{i}_{1}=\left(u_{1}+u_{2} \boldsymbol{i}_{3}\right) \boldsymbol{i}_{1}=Q_{2} \boldsymbol{i}_{1} .
$$

We see that the unit 1-vector term (as a factor in the first part third line)

$$
e_{1}=\hat{r}=\left((\cos 1 / 2 \psi) \sigma_{1}-(\sin 1 / 2 \psi) \sigma_{2}\right)
$$

$$
=\cos (-1 / 2 \psi) \sigma_{1}+\sin (-1 / 2 \psi) \sigma_{2},
$$

look like the unit circle in Cartesian coordinates in the plane of $\left\{\sigma_{1}, \sigma_{2}\right\}$ retrograde orientated by $-1 / 2 \psi$ (clockwise). But the right operation with σ_{3} turns the subject into the space outside this plane to exist in the plane supported by the unit bivector

$$
\boldsymbol{i}_{\perp}(1 / 2 \psi)=\mathrm{e}_{1} \sigma_{3}=\boldsymbol{i}_{2} U_{1}=U_{1}^{\dagger} \boldsymbol{i}_{2} \quad=Q_{1} \boldsymbol{i}_{2} / \rho=Q_{2} \boldsymbol{i}_{1} / \rho,
$$

 rotating with $1 / 2 \psi$ by $U_{1}^{\dagger}=e^{-i_{3} \frac{1}{2} \psi}$ as displayed in Figure 6.16.

Figure 6.16 The turned plane unit object $i_{\perp}(1 / 2 \psi)$.

The expression (6.151) concerns two of the four quaternion coordinates in (6.145)
(6.154) $\quad Q_{1} \boldsymbol{i}_{2}=Q_{2} \boldsymbol{i}_{1}=\rho\left(\boldsymbol{i}_{2} \cos 1 / 2 \psi+\boldsymbol{i}_{1} \sin 1 / 2 \psi\right)=+u_{1} \boldsymbol{i}_{1}+u_{2} \boldsymbol{i}_{2}=\rho \boldsymbol{i}_{\perp}(1 / 2 \psi)=\mathrm{B}(1 / 2 \psi)=\rho e^{-\boldsymbol{i}_{3} 1 / 2 \psi} \boldsymbol{i}_{2}$. This linear combination of the unit (orthonormal) bivector basis $\left\{\boldsymbol{i}_{1}, \boldsymbol{i}_{2}\right\}$ results in the turning bivector $\mathrm{B}(1 / 2 \psi)=\rho \boldsymbol{i}_{\perp}(1 / 2 \psi)=\rho \mathrm{e}_{1} \boldsymbol{\sigma}_{3}$ scaled by ρ in this plane direction $\boldsymbol{i}_{\perp}(1 / 2 \psi)$, see Figure 6.16. To intuit the foundation for this unit bivector basis $\left\{\boldsymbol{i}_{1}=\sigma_{3} \sigma_{2}, \boldsymbol{i}_{2}=\sigma_{1} \sigma_{3}\right\}$ compare with Figure 6.11. The idea of Figure 6.16 is to see the object bivector $\boldsymbol{i}_{\perp}=\mathbf{e}_{1} \boldsymbol{\sigma}_{3}$ as fixed in the external lab frame $\left\{\mathbf{e}_{1}, e_{2}, e_{3}=\sigma_{3}\right\}$ and the autonomy frame $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ for a physical entity Ψ spinning with the oscillator rotor $U_{1}=e^{i_{3}{ }^{1 / 2} \psi}$: E.g., the three $\sigma_{j}(1 / 2 \psi)=e^{i_{3}{ }^{1 / 2} \psi} \mathbf{e}_{j}$ relative to the laboratory directions.
© Jens Erfurt Andresen, M.Sc. Physics, Denmark
258 -
Research on the a priori of Physics - Decemer
${ }^{315}$ We have to consider the idea of the plane directions $\boldsymbol{i}_{2} \equiv \sigma_{1} \sigma_{3}$ and $\boldsymbol{i}_{1} \equiv \sigma_{3} \sigma_{2}$ as translation invariant subjects over the entire 3 space of some intuited plane objects $\left\{\sigma_{3}, \sigma_{1}\right\}$ and $\left\{\sigma_{2}, \sigma_{3}\right\}$ that we use for our distinction of the directions.
${ }^{16}$ We here remember that these (trigonometric) scalars u_{1}, u_{2} are invariant under rotations. The direction $\boldsymbol{i}_{3} \rightarrow \boldsymbol{i}_{1}$ chance. © Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-259-\quad$ Volume I, - Edition 2-2020-22, - Revision 6, \quad December 2022

