k: ISBN

Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

Geometric

Critique

of Pure

Mathematical

Reasoning

dition

N

 $\overline{\mathcal{P}}$

SO

earch

on

th

 $\overline{\mathbf{O}}$

ρ

priori

of

Phys10

CS

ens

rfurt

An

ldr

Sð.

en

 \sim

- II. The Geometry of Physics – 6. The Natural Space of Physics – 6.4. The Geometric Clifford Algebra –

Therefore, the magnitude of the quaternion is $\alpha = |Q| = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2} \in \mathbb{R}$. The symmetric bilinear form for the two generating bivectors (6.126) gives $(i_1)^2 = -1$ and $(\mathbf{i}_2)^2 = -1$, therefore a geometric algebra named $\mathcal{G}_{0,2}$ just as a Clifford algebra $\mathcal{C\ell}_{0,2}$.³¹² The third bivector *direction* is then implicit given $\mathbf{i}_2 \coloneqq \mathbf{i}_1 \mathbf{i}_2$, where $\mathbf{i}_2^2 = -1$, and the scalar *quality* is introduced by the product $1 = \mathbf{i}_3 \mathbf{i}_2 \mathbf{i}_1$, hence a full closed even algebra $\mathcal{G}_{0,2}$. In our practice, the negative part⁸⁷ of the real field of quaternions coordinates $q_k < 0$ make the negative part of the basis (6.130) unnecessary. The necessary standard basis for $\mathcal{G}_{0,2}(\mathbb{R})$ is just

$$(6.134) \quad \{1, \mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3\} \quad = \quad \{+1 = \mathbf{i}_3 \mathbf{i}_2 \mathbf{i}_1, \quad \mathbf{i}_1 = \mathbf{i}_2 \mathbf{i}_3, \quad \mathbf{i}_2 = \mathbf{i}_3 \mathbf{i}_1, \quad \mathbf{i}_3 = \mathbf{i}_1 \mathbf{i}_3\}$$

The linear algebraic space $\mathcal{G}_{0,2}$ is spanned by a real field $q_{\mu} \in \mathbb{R}$, $\mu=0,1,2,3$, so we could say that $\mathcal{G}_{0,2}(\mathbb{R})$ has four dimensions of real linearity, and note the even mixed *grades* of dimensionalities. We see the three *directions* i_{ν} of this basis set have the *primary quality of second grade (pag-2)*. We note that the one-dimensional scalar q_0 of zero grade (pgg-0) is non-directional. From this (6.131), (6.134) we deduce that the conceptual quaternion $\mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R})$ idea describes the full three dimension *directional* relations of *primary quality of second grade (pqg-2)* in 3-space by the even closed geometric algebra $\mathcal{G}_{0,2}(\mathbb{R})$, which we call the *quaternion algebra*. When it comes to the *direction* $\hat{Q} = Q/|Q|$ of a quaternion $Q \in \mathbb{H}$ there is only one real dilation factor for its magnitude $\alpha = |Q|$. This supporting *pqg-2-direction* has only one linear real dimension $O = \alpha \hat{O} \in \mathbb{H}, \ \alpha \in \mathbb{R}.$

6.4.4. The Versor as a Direction 2-Rotor

A unitary quaternion was by Hamilton called a versor, we in this book also call it a 2-rotor

 $U = \hat{Q} = Q/|Q| = u_0 + u_1 i_1 + u_2 i_2 + u_3 i_3 \in \mathbb{H}$, where $\forall u_{\kappa} \in \mathbb{R}$ for $\kappa = 0, 1, 2, 3$. (norm one) For such a real field unit quaternion 2-rotor group, we demand unit spherical S^3 symmetry³¹³ $UU^{\dagger} = 1 = u_0^2 + u_1^2 + u_2^2 + u_3^2$ (6.137)

6.4.4.2. The Traditional View on the Spatial Rotation Problem

To make the following intuition we make a *false presume* that U is never a pure real scalar, i.e., $u_0^2 < 1$ so that not all *directional* real components disappear $u_1^2 + u_2^2 + u_3^2 > 0$. Opposite when this happens $u_1^2 = u_2^2 = u_3^2 = 0 \Rightarrow u_0^2 = 1$ the *direction* part disappear, but essential $u_{\kappa}u_{\kappa} = 1$ for U. When we prevent the *direction* free case, we can separate the bivector part (6.125) as

from the versor (6.136) $U = u_0 + \mathbf{B}$. $\mathbf{B} = i\mathbf{b} = u_1i_1 + u_2i_2 + u_3i_3$, (6.138)

transversal to its dual 1-vector **b**. We normalize this to a unit *pqg-2-direction* bivector

 $i\mathbf{n} \coloneqq (u_1 i_1 + u_2 i_2 + u_3 i_3)/|u|$, where $u^2 = 1 - u_0^2 = u_1^2 + u_2^2 + u_3^2$, and $0 < |u| \le 1$, $u \in \mathbb{R}$, (6.139)as transversal to its dual 1-vector *direction* (mediated through the unit chiral volume *i*)

 $\mathbf{n} \coloneqq (u_1 \boldsymbol{\sigma}_1 + u_2 \boldsymbol{\sigma}_2 + u_3 \boldsymbol{\sigma}_3) / \sqrt{1 - u_0^2} = n_1 \boldsymbol{\sigma}_1 + n_2 \boldsymbol{\sigma}_2 + n_3 \boldsymbol{\sigma}_3 \in (V_3, \mathbb{R}), \text{ where } |\mathbf{n}| = 1.^{314}$ (6.140)

 ${}^{2}\mathcal{G}_{0,2} \sim \mathcal{G}(V_2,\mathbb{R})$, here dim $V_2 = 2$ indicate two bivector directions, e.g. i_1, i_2 as supporting generators (6.126) with $q_1i_1 + q_2i_2$, while the third direction is implicit interconnected $\mathbf{i}_3 \equiv \mathbf{i}_1 \mathbf{i}_2^{\dagger}$, $\mathbf{i}_3^2 = -1$ for the 1-spinor $q_0 1 + q_3 \mathbf{i}_3$, where the scalar unit $1 = \mathbf{i}_3 \mathbf{i}_2 \mathbf{i}_1$ is N 020introduced, (these i_1, i_2, i_3 can be cyclically permutated). The unitary U(1) circle group of elements $e^{i\varphi} \in \mathbb{T} \subset \mathbb{C}$ is a one-parameter group, real argued by $\varphi \in \mathbb{R}$ as an angular measure. We will below see that such two angular parameters can determine a quaternion direction in a S^2 unit sphere (spherical coordinates), therefore we have $\mathcal{C}\ell_{0,2}(V_2,\mathbb{C})\sim \mathcal{G}_{0,2}(\mathbb{R})$, isomorph with SU(2). The two bivectors i_k and i_i where $k \neq j$ will be generators for the angular development in two rotors $e^{i_k \varphi_k}$ and $e^{i_j \varphi_j}$. Two other N reals can do the dilation of these unitary rotors, in all four reals. The heuristic picture in \mathbb{C}^2 seems ambiguous. ³ These simple real quaternions are Hermitian. For a rotor, we use $U^{\dagger} = \widetilde{U}$ to match the form from quantum mechanics. All these 1-vectors $\forall \mathbf{n} \in (V_3, \mathbb{R})$ has all *direction* possibilities in the 3 space spherical S²-symmetry $n_1^2 + n_2^2 + n_3^2 = 1$. The new is that the versor quaternion is a mixed linear dimensionality of four reals: dim $(\forall \hat{Q} \in \mathbb{H} \sim \text{span}((6.126))) \sim 4$, with a S³-symmetry $u_0^2 + u_1^2 + u_2^2 + u_3^2 = 1$ for the special unitary group SU(2) which homomorphy to the orthogonal rotation group $O^+(3) \sim SO(3)$. C Jens Erfurt Andresen, M.Sc. Physics, Denmark -256Research on the a priori of Physics December 2022

For quotation reference use: ISBN-13: 978-8797246931

-6.4.4. The Versor as a Direction 2-Rotor -6.4.4.3 The Four Real Scalar Coordinates for the Versor Outernion Direction

We have here introduced the Cartesian coordinates for the unit 1-vector *direction* $\left(n_1 = \frac{u_1}{\sqrt{1 - u_0^2}}, n_2 = \frac{u_2}{\sqrt{1 - u_0^2}}, n_3 = \frac{u_3}{\sqrt{1 - u_0^2}}\right)$ (6.141)Thus, we write the specific *direction* unit bivector $i_n = i_n = n_1 i_1 + n_2 i_2 + n_3 i_3$ (6.142)Then we have the 1-rotor form

(6.143) $U = u_0 + u \mathbf{i}_n$

with the bivector dilation $|u| = \sqrt{u_1^2 + u_2^2 + u_3^2}$. We choose the scalar part $u_0 = \cos \frac{1}{2}\varphi$, so that $\varphi = 2\cos^{-1}(u_0)$, and hence we have for the transversal bivector part $u = \sin \frac{1}{2}\varphi$. Whence the rotor for the *direction* (6.139) and (6.142) is

 $U = u_0 + uin = \cos \frac{1}{2}\varphi + in \sin \frac{1}{2}\varphi = U_{in} = e^{in\frac{1}{2}\varphi} = e^{(n_1i_1 + n_2i_2 + n_3i_3)\frac{1}{2}\varphi} \in \mathbb{H}.$ (6.144)We see that there is a problem with the 1-rotor form $u_0 + u_{i_0}$ because the transversal bivector *direction* $\mathbf{i}_n = \mathbf{i}_n$ is governed by three arguments (6.139)-(6.142) from the fundamental form (6.136). This gives extra freedom of *direction* fluctuation inside the $\mathcal{G}_{0,2}$ algebra. The *direction* i_n unit condition (6.142) demands *direction* continuity at $u_0 \rightarrow 1$ and $u \rightarrow 0$.

Anyway, for the intuition, the simple even graded 1-rotor form idea (6.143) $U = u_0 + u_{i_n}$ is necessary for the idea of a bivector exponential development $e^{i_n \frac{1}{2}\varphi}$ in its own transversal *direction* $\mathbf{i}_{n} = \mathbf{i}_{n}$ as the *primary quality of second grade* in duality with the odd *first grade direction* $\mathbf{n} = -i\mathbf{i}_{n}$, by intervention of the *third grade* chiral volume pseudoscalar \mathbf{i} . The extra freedom with fluctuation of this intuit rotation axis *direction* we shall investigate further. This could be a second or several independent exponential development 1-rotors. We keep track of the essential even algebra $\mathcal{G}_{0,2}$ and look at a 2-rotor idea of the versor quaternion quality and keep in mind the duality to understand all the aspects of the grades pgg-0, pqg-1, pqg-2 and pqg-3 in combination, and ask the question: What does this mean in the perspective of the mixed basis (6.119) with the later formulation (6.179)? First, we can say, that the coordinates u_1, u_2, u_3 (6.136) or the non-zero (n_1, n_2, n_3) (6.141) determine the pqg-1 *direction* $\mathbf{n} = (u_1 \sigma_1 + u_2 \sigma_2 + u_3 \sigma_3)/|u|$, and further that the rotation angle is $\varphi = 2 \cos^{-1}(u_0)$ in the pqg-2 plane $i_n = i_n$. – But in all, for the versor $U = \hat{Q}$ it depends on all four u_0, u_1, u_2, u_3 .

6.4.4.3. The Four Real Scalar Coordinates for the Versor Quaternion Direction We take an external view to this (6.144) from (6.136) we have a unit **quaternion** versor \hat{Q} as this directed 2-rotor in an even algebra

(6.145)
$$U=\hat{Q}=u_0+u_1i_1+u_2i_2+u_3i_3=u_0+uin=U_{in}=e^{in\frac{1}{2}\varphi} \in \mathbb{H} \sim \mathcal{G}_{0,2}(\mathbb{R}).$$

From this idea, we can separate that versor quaternion in two orthogonal rotation pla

directions along i_i and i_k , where $j_i k = 1,2,3$ and $k \neq j_i$, by using the following simple linear algebra technic to separate the independency from the interconnectivity. We have six cases:

$$\begin{array}{ll} (6.145a) & \hat{Q} = u_0 + u_1 i_1 + u_2 i_2 + u_3 i_3 = (u_0 + u_1 i_1) + (u_2 i_2 + u_3 i_3) \\ (6.145b) & \hat{Q} = u_0 + u_1 i_1 + u_3 i_3 + u_2 i_2 = (u_0 + u_1 i_1) + (u_3 i_3 - u_2 i_3) \\ (6.145c) & \hat{Q} = u_0 + u_2 i_2 + u_3 i_3 + u_1 i_1 = (u_0 + u_2 i_2) + (u_3 i_3 + u_1 i_3) \\ (6.145d) & \hat{Q} = u_0 + u_2 i_2 + u_1 i_1 + u_3 i_3 = (u_0 + u_2 i_2) + (u_1 i_1 - u_3 i_3) \\ (6.145e) & \hat{Q} = u_0 + u_3 i_3 + u_1 i_1 + u_2 i_2 = (u_0 + u_3 i_3) + (u_1 i_1 + u_2 i_3) \\ (6.145f) & \hat{Q} = u_0 + u_3 i_3 + u_2 i_2 + u_1 i_1 = (u_0 + u_3 i_3) + (u_2 i_2 - u_1 i_3) \\ \end{array}$$

We presume there are two driving 1-spinor quaternions in the same rotation plane i_i , that are complexified in the quaternion by relative creating the orthogonal rotation plane i_{i} . (intuit $i_{i} \perp i_{i}$) - This implicates us to intuit, two independent (orthogonal) perpendicular rotation planes: The one *direction* with the two driving 1-spinors, the first that stays in that *direction* by multiplying by 1 and the other perpendicular 1-spinor generated by the second turned in

© Jens Erfurt Andresen, M.Sc. NBI-UCPH

For quotation reference use: ISBN-13: 978-8797246931

where $\mathbf{i_n}^2 = -1 \Rightarrow |\mathbf{i_n}| = 1$ and $n_1^2 + n_2^2 + n_3^2 = 1$.

 $i_1i_2 = (u_0 + u_1i_1) + (u_2 + u_3i_1)i_2$ $i_1 i_3 = (u_0 + u_1 i_1) + (u_3 - u_2 i_1) i_3$

 $(u_0 + u_2 i_2) = (u_0 + u_2 i_2) + (u_3 + u_1 i_2) i_3$

 $\mathbf{i}_{2}\mathbf{i}_{1}$ = $(u_{0}+u_{2}\mathbf{i}_{2})1 + (u_{1}-u_{3}\mathbf{i}_{2})\mathbf{i}_{1}$,

 $\mathbf{i}_{3}\mathbf{i}_{1} = (u_{0} + u_{3}\mathbf{i}_{3})\mathbf{1} + (u_{1} + u_{2}\mathbf{i}_{3})\mathbf{i}_{1} = Q_{3}\mathbf{1} + Q_{2}\mathbf{i}_{1},$ $\hat{Q} = u_0 + u_3 \mathbf{i}_3 + u_2 \mathbf{i}_2 + u_1 \mathbf{i}_1 = (u_0 + u_3 \mathbf{i}_3) + (u_2 \mathbf{i}_2 - u_1 \mathbf{i}_3 \mathbf{i}_2) = (u_0 + u_3 \mathbf{i}_3) \mathbf{1} + (u_2 - u_1 \mathbf{i}_3) \mathbf{i}_2 = Q_3 \mathbf{1} + Q_1 \mathbf{i}_2$