
6.4.1.4. Plane Subjects in Euclidean 3 Space Clifford Algebra $\mathcal{G}_{3,0}$

For any plane substance defined by two orthonormal $\left(\sigma_{k} \cdot \sigma_{j}=\delta_{k j}\right)$ basis 1-vector objects $\left\{\sigma_{k}, \sigma_{j}\right\}$
in a Euclidean 3-space we write the full product of these basis 1-vectors
(6.101) $\sigma_{k j}=\sigma_{k} \sigma_{j}=\left\langle\sigma_{k} \sigma_{j}\right\rangle_{0}+\left\langle\sigma_{k} \sigma_{j}\right\rangle_{2}=\sigma_{k} \cdot \sigma_{j}+\sigma_{k} \wedge \sigma_{j}$. Where special for
(6.102) $\quad k \neq j \Rightarrow \sigma_{k j}=\sigma_{k} \wedge \sigma_{j}=i \sigma_{l}=i_{l}$, where $k \neq l \neq j$, and alternative $k=j \Rightarrow \sigma_{k k}=\sigma_{k} \sigma_{k}=1$. From this, we first write the matrix form where the elements are the separated products of $\sigma_{k} \sigma_{j}$,
(6.103) $\quad \sigma_{k j} \leftrightarrow\left[\begin{array}{cc}\sigma_{k} \sigma_{k} & \sigma_{j} \sigma_{k} \\ \sigma_{k} \sigma_{j} & \sigma_{j} \sigma_{j}\end{array}\right]=\left[\begin{array}{ccc}\sigma_{k} \cdot \sigma_{k} & \sigma_{j} \cdot \sigma_{k} \\ \sigma_{k} \cdot \sigma_{j} & \sigma_{j} \cdot \sigma_{j}\end{array}\right]+\left[\begin{array}{cc}\sigma_{k} \wedge \sigma_{k} & \sigma_{j} \wedge \sigma_{k} \\ \sigma_{k} \wedge \sigma_{j} & \sigma_{j} \wedge \sigma_{j}\end{array}\right]_{2}=1\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\sigma_{k} \wedge \sigma_{j}\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
(6.104) $\quad \boldsymbol{\sigma}_{k j} \leftrightarrow \quad\left(\begin{array}{cc}1 & -\boldsymbol{i}_{l} \\ \boldsymbol{i}_{l} & 1\end{array}\right)=\mathbf{1}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\boldsymbol{i}_{l}\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$

For the three perpendicular planes in 3 -space, we choose matrix indices as column sequential cyclic order by colour in the following framework $\rightarrow \rightarrow\left\{\begin{array}{l}j=1,3,2 \\ k=2,1,3\end{array}\right\}$ This matrix structure gives the foundation for the Pauli matrices (see below)
We see the equivalent to a basis of an even multivector algebra $\mathcal{G}_{3,0}^{+}$for one plane, e.g., for indices l
(6.105) $\quad A \rightarrow\langle A\rangle_{0,2}^{+}=\langle A\rangle_{0}+\langle A\rangle_{2}=\alpha_{k j} 1+\left(\beta_{k j}\right) \sigma_{k j}=\alpha_{l}+\left(\beta_{l}\right) \boldsymbol{i}_{l}, \quad$ where $\alpha_{l}, \beta_{l} \in \mathbb{R}$. ${ }^{305}$ To fully understand this rotor as (6.101) for the plane concept we recall from the original definition (5.56)-(5.60), that a reversion changes the orientation of the rotor direction. In general, the reverse order in geometric algebra is expressed as $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$, from this it is obvious that for 1 -vectors $\mathbf{a}^{\dagger}=\mathbf{a}$ or $\langle A\rangle_{1}^{\dagger}=\langle A\rangle_{1}$ because there is essentially only one 1 -vector in $\langle A\rangle_{1}$. Scalars has no direction (pqg-0), therefore $\langle A\rangle_{0}^{\dagger}=\langle A\rangle_{0}$ too.
For the simplest product, we have (ac) ${ }^{\dagger}=\mathbf{c}^{\dagger} \mathbf{a}^{\dagger}=\mathbf{c a}$. For the reverse of (6.105) we have $A^{\dagger} \rightarrow\langle A\rangle_{0,2}^{+\dagger}=\langle A\rangle_{0}-\langle A\rangle_{2} \sim \alpha_{k j} 1-\left(\beta_{k j}\right) \sigma_{k j}=\alpha_{l}-\left(\beta_{l}\right) \boldsymbol{i}_{l}$.
From this complicated matrix concept idea, we get
$\langle A\rangle_{0,2}^{+}\langle A\rangle_{0,2}^{+\dagger}=\langle A\rangle_{0}^{2}+\langle A\rangle_{2}^{2}=\alpha^{2}+\beta^{2}, \quad$ and $\quad \sigma_{k j}^{2}=-1 \quad$ for $k \neq j,=1,2,3$.
We repeat the 1-rotor concept from (6.77) combined with (6.71), (6.72) $\leftarrow(5.191)$, (5.192)
(6.108) $U=\widetilde{\mathrm{uv}}=\mathrm{vu}=\mathrm{v} \cdot \mathrm{u}+\mathrm{v} \wedge \mathrm{u}=e^{+1 / 2 \theta}=U_{\phi \widehat{\omega}}=e^{+i \widehat{\omega} \phi}=1 \cos \phi+i \widehat{\omega} \sin \phi$
(6.109) $U^{\dagger}=\widetilde{U}=\widetilde{\mathrm{uv}}=\mathrm{vu}=\mathrm{v} \cdot \mathrm{u}-\mathrm{v} \wedge \mathrm{u}=e^{-1 / 2 \boldsymbol{\theta}}=\widetilde{U}_{\phi \widehat{\omega}}=e^{-i \widehat{\omega} \phi}=1 \cos \phi-i \widehat{\omega} \sin \phi$
where we have the rotor angle between two 1 -vectors $\phi=\Varangle(\mathbf{u}, \mathbf{v})$, and the bivector $1 / 2 \boldsymbol{\theta}=\boldsymbol{i} \widehat{\omega} \phi$ as an argument in the multivector exponential function $e^{1 / 2 \boldsymbol{\theta}}$. We have unitarity (6.110) $U \widetilde{U}=U U^{\dagger}=\cos ^{2} \phi+\sin ^{2} \phi=1$.

From the orthogonal basis matrix structure (6.103) where we choose $\widehat{\omega}=\widehat{\omega}_{l} \equiv \sigma_{l}=-\boldsymbol{i} \sigma_{k j}$ (6.111) $\quad \sigma_{k j} \leftrightarrow 1\left[\begin{array}{rr}1_{k} & 0_{l} \\ 0_{l} & 1_{j}\end{array}\right]+i \widehat{\omega}_{l}\left[\begin{array}{rr}0_{k} & -1_{l} \\ 1_{l} & 0_{j}\end{array}\right], \quad \quad$ where $l \neq j \neq k \neq l$, and $j, k, l=1,2,3$ as (6.101). For the trigonometric functions from the rotation angle for the real 2×2 rotation matrix we have (6.112) $\quad \phi \rightarrow \cos \phi\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\sin \phi\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right], \quad$ (without specified direction). The set of these functions is called the special orthogonal group $S O$ (2) mentioned (1.54), with the determinant $\left|\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right|=1$, equivalent to (6.110)
When we instead use the complex number plane picture for the circle group $\mathbb{T} \subset \mathbb{C}$, from I. (1.51)
$\mathbb{R} \rightarrow \mathbb{T}: \phi \rightarrow e^{i \phi}=\cos \phi+i \sin \phi$
this group is isomorph equivalent to the unitary $U(1)$ where $e^{i \phi_{1}} e^{i \phi_{2}}=e^{i\left(\phi_{1}+\phi_{2}\right)}$ is in one plane.
${ }^{305}$ Here we do not use Einstein sum over double indexes, $\sum_{\bar{m}}\left(\beta_{k j}\right) \boldsymbol{\sigma}_{k j}$. The sum is valid, but not the essence for one plane. © Jens Erfurt Andresen, M.Sc. Physics, Denmark $\quad-252-\quad$ Research on the a priori of Physics - \quad December 2022

In this the complex numbers pure imaginary unit $i \in \mathbb{C}$, with $i^{2}=-1$, is indeed not a bivector narrative for the intuition, but intentionally abstract as in the a priory transcendental tradition. Anyway, the group $U(1)$ structure is isomorph equivalent to the multivector concept of a 1-rotor
$u: \phi \rightarrow U_{\phi \widehat{\omega}}=e^{i \widehat{\omega} \phi}=1 \cos \phi+i \widehat{\omega} \sin \phi, \quad($ In the transversal plane direction of $\widehat{\omega})$,
as one real parameter multivector function for the angular rotation in a directional plane $\boldsymbol{i} \widehat{\omega}$. These elements as in the group $U(1)$ give subjects in Geometric Algebra that is even $\mathcal{G}_{3,0}^{+}$in the total $\mathcal{G}_{3,0}$ as rotor $\langle A\rangle_{0,2}^{+}=U_{\phi \widehat{\omega}}=U_{\phi}=v u \perp \widehat{\omega}$, around an object $\widehat{\omega}$ in 3 -space of physics. ${ }^{306}$

6.4.2. The Pauli Basis for combined direction structures of 3 -space

We again choose the standard 1-vector basis $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ for the geometric algebra $\mathcal{G}_{3,0}(\mathbb{R})$.
Do we choose the direction so $\widehat{\omega}=\sigma_{3}$ we can rewrite the $\langle A\rangle_{2}$ unit part of (6.103) and (6.111)
(6.115) $\langle A\rangle_{2} \leftrightarrow \sigma_{2} \wedge \sigma_{1}\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)=\sigma_{21}\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)=\boldsymbol{i} \widehat{\omega}\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)=\boldsymbol{i} \sigma_{3}\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right) \leftrightarrow\left\{\begin{array}{l}-\boldsymbol{i} \sigma_{3}=\sigma_{1} \sigma_{2}=-\boldsymbol{i}_{3}, \\ +\boldsymbol{i} \sigma_{3}=\sigma_{2} \sigma_{1}=+\boldsymbol{i}_{3} .\end{array}\right.$

We see (as seen so often before) that the transversal pqg-2 rotation orientation around a pqg-1
direction $\widehat{\omega}$ has two states. As we may know ${ }^{307}$ there are just three categorical independent
1 -vector directions in 3 -space of physics, locally represented by different objects σ_{1}, σ_{2} and σ_{3}.
6.4.2.2. The Pauli Matrices as generator operators

Wolfgang Pauli expressed these differences and dependency by three fundamental matrices: (6.116) $\hat{\sigma}_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad \hat{\sigma}_{2}=i\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right), \quad \hat{\sigma}_{3}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$, and the neutral Identity $\hat{\sigma}_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

The identity matrix expresses that unitary structure by $\hat{\sigma}_{1}^{2}=\hat{\sigma}_{2}^{2}=\hat{\sigma}_{3}^{2}=\hat{\sigma}_{0}^{2}=\hat{\sigma}_{0}$. And $i=\sqrt{-1}$, i.e., $i^{2}=-1$ is a quality multiplication operation, that when used two times reverse the orientation of a direction with consequence two stats of orientation (\pm) From this, we construct the closed Pauli group that consists of $2^{4}=16$ elements
$\left\{ \pm \hat{\sigma}_{0}, \quad \pm \hat{\sigma}_{1}, \pm \hat{\sigma}_{2}, \pm \hat{\sigma}_{3}, \quad \pm i \hat{\sigma}_{1}=\left\{\begin{array}{l}\hat{\sigma}_{2} \hat{\sigma}_{3} \\ \hat{\sigma}_{3} \hat{\sigma}_{2}\end{array}, \pm i \hat{\sigma}_{2}=\left\{\begin{array}{l}\hat{\sigma}_{3} \hat{\sigma}_{1} \\ \hat{\sigma}_{1} \hat{\sigma}_{3}\end{array}, \pm i \hat{\sigma}_{3}=\left\{\begin{array}{l}\hat{\sigma}_{1} \hat{\sigma}_{2} \\ \hat{\sigma}_{2} \hat{\sigma}_{1},\end{array} \quad \pm i \hat{\sigma}_{0}\right\}\right.\right.\right.$.
The three generating multiplication matrix operators $\hat{\sigma}_{1}, \hat{\sigma}_{2}, \hat{\sigma}_{3}$ of the Pauli group produce $2^{3}=8$ different direction qualities with double \pm orientation in physics.
A closer look at this closed group shows a closed subgroup we call the Lifted Pauli Group
(6.118) $\left\{ \pm \hat{\sigma}_{0}, \pm i \hat{\sigma}_{1}, \pm i \hat{\sigma}_{2}, \pm i \hat{\sigma}_{3}\right\}=\left\{ \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \pm\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right), \pm\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right), \pm\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)\right\}$. With $2^{3}=8$ elements representing $2^{2}=4$ direction qualities of double \pm orientation. We return to the more intuitive picture of multivectors in Geometric Algebra.

6.4.2.3. The Pauli Basis Generated from 1 -vectors

From the dextral orthonormal basis $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ of 1-vectors for the geometric algebra $\mathcal{G}_{3,0}(\mathbb{R})$ for 3 -space we have the mixed basis of $2^{3}=8$ direction qualities that we call a Pauli basis ${ }^{308}$
(6.119)
$\left\{1, \sigma_{1}, \sigma_{2}, \sigma_{3}, \quad \boldsymbol{i} \sigma_{1}=\sigma_{3} \sigma_{2}, \quad i \sigma_{2}=\sigma_{1} \sigma_{3}, \quad i \sigma_{3}=\sigma_{2} \sigma_{1}, \quad \boldsymbol{i}:=\sigma_{3} \sigma_{2} \sigma_{1}\right\}$
Of these 8 direction qualities, there are one pqg-0, three pqg-1, three pqg-2 planes, and one pqg-3 quality for volume. The first is a scalar and has as such no direction in 3-space of physics All of these eight qualities can quantitively be scaled with both positive and negative reals \mathbb{R}, so, we do not need the $\pm \mathrm{f}$ or orientations as in (6.117) for this generating mixed basis elements to be complete in the geometric algebra $\mathcal{G}_{3,0}(\mathbb{R})$. (In all with $2^{4}=16$ generators as (6.117).) For every multivector in $\mathcal{G}_{3,0}(\mathbb{R})$ from (6.59), we have a linear combination
${ }^{306}$ In physics, there is something outside $\langle A\rangle_{1} \sim \widehat{\omega}$, this is the transversal rotation plane $\langle A\rangle_{2} \sim \boldsymbol{i}$, as an impact of $\langle A\rangle_{3} \sim \boldsymbol{i}$.
307 Immanuel Kant was the first to reason this ${ }^{178}$ by the Kepler-Newton square law from Descartes's original extension idea. ${ }^{308}$ David Hestenes call the algebra for this group the Pauli algebra [6]p.16, §'6 The Algebra of Space' 196612015.
© Jens Erfurt Andresen, M.Sc. NBI-UCPH, -253- Volume I, - Edition 2-2020-22, - Revision 6,

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

