∇

esearch

on

th

b

priori

of

Physics

en

 \mathbf{v}

Andres

Õ

B

N

020 -

N

December 2022

Geometric

Critique

0

^c Pure

Mathematical Reasoning

- II. . The Geometry of Physics – 6. The Natural Space of Physics – 6.3. The 3-space Structure Quality Described by

6.3.6. Rotation of Multivectors

After this, we rotate a bivector (5.58) $\mathbf{B} = \mathbf{c} \wedge \mathbf{a} = \frac{1}{2}(\mathbf{c}\mathbf{a} - \mathbf{a}\mathbf{c})$ by rotating each 1-vector

(6.86)
$$\underline{\mathcal{R}}\mathbf{B} = U\mathbf{B}U^{\dagger} = U(\mathbf{c}\wedge\mathbf{a})U^{\dagger} = \frac{1}{2}U(\mathbf{c}\mathbf{a} - \mathbf{a}\mathbf{c})U^{\dagger} = \frac{1}{2}(U\mathbf{c}U^{\dagger}U\mathbf{a}U^{\dagger} - U\mathbf{a}U^{\dagger}U\mathbf{c}U^{\dagger}) = \mathbf{c}'\wedge\mathbf{a}' = \mathbf{B}'.$$

here we used that $U^{\dagger}U = 1.^{301}$ That is simple, \mathcal{R} rotates a bivector to a bivector just as a 1-vector rotates to a 1-vector. The unit *pqg*-3 trivector *i* as chiral volume pseudoscalar $\langle A \rangle_3$ commute with all terms in the $\mathcal{G}_3(\mathbb{R})$ algebra therefor

$$(6.87) \qquad U\boldsymbol{i}U^{\dagger} = UU^{\dagger}\boldsymbol{i} = \boldsymbol{i}$$

i is rotation invariant. The scalar $\langle A \rangle_0$ is of cause too rotation invariant

(6.88)
$$\underline{\mathcal{R}}\langle A \rangle_0 = U \langle A \rangle_0 U^{\dagger} = U U^{\dagger} \langle A \rangle_0 = \langle A \rangle_0$$

We here see that rotation \mathcal{R} preserve **grades** in the $\mathcal{G}_3(\mathbb{R})$ geometric algebra

(6.89)
$$\underline{\mathcal{R}}\langle A \rangle_r = \underline{U}\langle A \rangle_r \underline{U}^\dagger = \langle A \rangle_r'$$

All these grades are connected in rotation by e.g.

(6.90)
$$(i\underline{\mathcal{R}}\mathbf{B} = iU\mathbf{B}U^{\dagger} = Ui\mathbf{B}U^{\dagger} = i\mathbf{B}' \text{ and } i\mathbf{B} = -\mathbf{b}) \Leftrightarrow \underline{\mathcal{R}}\mathbf{b} = U\mathbf{b}U^{\dagger} = \mathbf{b}'.$$

We then conclude that all multivectors constructed of a polynomial of all grades

(6.91)
$$A = \langle A \rangle_0 + \langle A \rangle_1 + \langle A \rangle_2 + \langle A \rangle_3 + \cdots$$

rotates in the same manner without mixing the grades. In the traditional matrix representation in frame coordinates, this is called an orthogonal rotation.

6.3.7. Framing a Field for Geometric Algebra in 3-space

Giving a dextral (righthanded) orthonormal basis $\{\mathbf{e}_i, j=1,2,3\} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ as a founding object for a Cartesian coordinate system³⁰² for a straight-line field structure in 3-space. We can obtain any local orthonormal (standard) frame by an orthogonal rotation in the canonical form

(6.92)
$$\boldsymbol{\sigma}_i = \boldsymbol{U} \mathbf{e}_i$$

This operation³⁰³ is a mapping of the frame

$$(6.93) \qquad \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\} \longrightarrow \{\mathbf{\sigma}_1, \mathbf{\sigma}_2, \mathbf{\sigma}_3\}$$

The inverse mapping

 $\{\sigma_1, \sigma_2, \sigma_3\} \rightarrow \{e_1, e_2, e_3\},\$ (6.94)

with the inverse operation

(6.95)
$$\mathbf{e}_k = U^{\dagger} \mathbf{\sigma}_k U,$$

due to $UU^{\dagger} = U^{\dagger}U = 1$.

Alternatively, the local frame can be expressed by a rotation matrix

(6.96)
$$\mathbf{e}_k = \alpha_{j,\mathbf{k}} \mathbf{\sigma}_j \qquad = \sum_j \alpha_{j,\mathbf{k}} \mathbf{\sigma}_j$$

The matrix elements can be solved as a scalar function of U

6.97)
$$\alpha_{k,j} = \boldsymbol{\sigma}_k \cdot \mathbf{e}_j = (U\mathbf{e}_k U^{\dagger}) \cdot \mathbf{e}_j =$$

or

(.98)
$$\alpha_{i,k} = \mathbf{\sigma}_i \cdot \mathbf{e}_k = \mathbf{\sigma}_i \cdot (U^{\dagger} \mathbf{\sigma}_k U) = \langle \mathbf{\sigma}_i U^{\dagger} \mathbf{\sigma}_k U \rangle$$

To do this the reader can study this further in the literature, e.g., [10]p.286ff.

 $\langle U \mathbf{e}_k U^{\dagger} \mathbf{e}_i \rangle_0.$

⁰¹ This deduction is inspired by [18] p48.

⁰² Where $\mathbf{e}_2 \perp \mathbf{e}_1$, $\mathbf{e}_3 \perp \mathbf{e}_2$, $\mathbf{e}_1 \perp \mathbf{e}_3$, and $|\mathbf{e}_1| = |\mathbf{e}_2| = |\mathbf{e}_3| = 1$, as orthonormal $\mathbf{e}_j \cdot \mathbf{e}_k = \frac{1}{2} (\mathbf{e}_j \mathbf{e}_k + \mathbf{e}_j \mathbf{e}_k) = \delta_{jk}$, j, k = 1, 2, 3. And where translation invariance is presumed obvious as well as we have Galileo translation invariance over time. Different local points P in 3 space relative to an origo O for the basis $\{O, e_1, e_2, e_3\}$ is a problem we already know. ³³ This is written conversely to [5]p.23-24 and [10]3.31p.286.

C Jens Erfurt Andresen, M.Sc. Physics, Denmark - 250 -Research on the a priori of Physics

For quotation reference use: ISBN-13: 978-8797246931

- 6.3.7. Framing a Field for Geometric Algebra in 3-space - 6.4.1.3 The simple Euclidean Plane Geometric Clifford

6.4. The Geometric Clifford Algebra

Due to Hestenes, Clifford called his multiplication algebra for Geometric Algebra, so here we call the real Clifford algebra for Geometric Algebra with the terms $\mathcal{G}_n = \mathcal{G}_n(\mathbb{R}) = \mathcal{G}(V_n, \mathbb{R}) \sim \mathcal{C}\ell_n(V, \mathbb{R})$. This type of linear algebra can be equipped with different types of basis vectors. E.g.: $\mathcal{G}_3(\mathbb{R})$ has the intuit object standard basis $\{\sigma_1, \sigma_2, \sigma_3\}$ of 1-vectors, where $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = 1$. Further the dual basis $\{\mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3\} = \{\mathbf{\sigma}_3 \mathbf{\sigma}_2, \mathbf{\sigma}_1 \mathbf{\sigma}_3, \mathbf{\sigma}_2 \mathbf{\sigma}_1\}$ of bivectors, where $\mathbf{i}_1^2 = \mathbf{i}_2^2 = \mathbf{i}_3^2 = -1$, is intuited as a subject orthonormal basis for the substance *idea of planes* in 3-space of physics.

6.4.1.1. The Quadratic Form in general

It is now time to expand the metric quadratic form from (5.37) and (5.42) $\mathbf{v}^2 = \mathbf{Q}(\mathbf{v}) \epsilon_A$, Where we have the possible signatures $\epsilon_A = 1, 0, -1$. We can construct a linear space of dimension $n = \dim(V_n)$ where the generating 1-vector spaces V_n has positive signed quadrats and the rest of dimensions $V_{a=n-p}$ has negative signed quadrats. We combined both by addition to a linear space $V_n = V_n \oplus V_a$. Multiplication of these 1-vectors $v_k \in V_n$, k=1,2,...,n, forming polynomial multivectors generating the linear spaces of the geometric algebra $\mathcal{G}_{n,q} \leftarrow \mathcal{G}_n$ where n=p+q, we define the quadratic form

(6.99)
$$Q(v) = v_1^2 + \dots + v_p^2 - v_{p+1}^2 - \dots - v_{p+q}^2 \in \mathbb{R}$$

This geometric algebra $\mathcal{G}_{p,q}(\mathbb{R}) = \mathcal{G}(V_n, \mathbb{R})$ is equal to a Clifford algebra $\mathcal{C}\ell_{p,q}(\forall v \in V_n, \mathbb{R}, Q(v))$.

6.4.1.2. The Clifford Algebra for Complex Numbers

Short, the quadratic form also works for \mathbb{C} : $Q(z) = z_1^2 + z_2^2 + \dots + z_n^2$, then we e.g., write $\mathcal{C}\ell_0(\mathbb{C}) \sim \mathbb{C}$, $\mathcal{C}\ell_1(\mathbb{C}) \sim ([\mathbb{C}], \mathbb{C})$, $\mathcal{C}\ell_2(\mathbb{C}) \sim ([\mathbb{C} \ \mathbb{C}], \mathbb{C})$, ... We will not go further into this right here, but history is rich in this. Anyway: The complex number C is good for the complex plane idea, such as the transversal plane concept. But: We here stick to the real field \mathbb{R} for a general geometric algebra $\mathcal{G}_{p,q} = \mathcal{G}_{p,q}(\mathbb{R}) = \mathcal{G}(V_n, \mathbb{R})$.³⁰⁴

6.4.1.3. The simple Euclidean Plane Geometric Clifford Algebra $G_{2,0}$ A plane concept \mathfrak{P} we traditional span by the Cartesian coordinate system from the orthonormal basis set $\{\sigma_1, \sigma_2\}$ as a 2-dimensional 1-vector space (V_2, \mathbb{R}) the geometric algebra for this is $\mathcal{G}_{2,0}$ and for this, we have the $2^2 = 4$ -dimensional linear mixed grades. The multivector for this has the **grade** structure $A = \langle A \rangle_0 + \langle A \rangle_1 + \langle A \rangle_2$ in $\mathcal{G}_{2,0}(\mathbb{R})$. We name an orthonormal basis $\{1, \sigma_1, \sigma_2, \sigma_{21} \coloneqq \sigma_2 \sigma_1\}$ for this, which have the group multiplication structure Table 6.1: Multiplication of all elements with -1 closes the multiplication group for this plane $\mathcal{G}_{2,0} = \mathcal{G}_2(\mathbb{R})$ alge The $\langle A \rangle_2$ (*pqg*-2) unit bivector $\sigma_{21} \coloneqq \sigma_2 \sigma_1$ squares $\sigma_{21}^2 = -1$, reverses $\sigma_{12} = -\sigma_{21}$ and anticommute all 1-vectors in its own plane $\sigma_{21} \mathbf{x} = -\mathbf{x} \sigma_{21}$. From this, we span the full multivector algebra $A = \langle A \rangle_0 + \langle A \rangle_1 + \langle A \rangle_2$ for $\mathcal{G}_{2,0}$. First, the scalar $\langle A \rangle_0 = \alpha 1$, where $\alpha \in \mathbb{R}$ and the general bivector $\langle A \rangle_2 = \beta_3 \sigma_{21}$, where $\beta_3 \in \mathbb{R}$. Then we have that any 1-vector $\langle A \rangle_1$ is expressed in the odd algebra $\mathcal{G}_{2,0}$ as $\langle A \rangle_1 = \mathbf{x} = x_1 \mathbf{\sigma}_1 + x_2 \mathbf{\sigma}_2 \qquad \leftrightarrow \qquad (x_1, x_2) \begin{pmatrix} \mathbf{\sigma}_1 \\ \mathbf{\sigma}_2 \end{pmatrix} \text{ in a matrix formulation.}$ (6.100)For this Cartesian plane, we have the quadratic metric $\mathbf{x}\mathbf{x} = \mathbf{x}^2 = x_1^2 + x_2^2$ and general for a Euclidean space $\mathbf{x}^2 = x_k x_k = \sum_k x_k^2$ with the orthonormal basis $\boldsymbol{\sigma}_k \cdot \boldsymbol{\sigma}_i = \delta_{ki}$.

To enrich the plane concept with the complex numbers C, will be awkward when it comes to 3-space with $\mathcal{G}_{3,0}$, instead we will stick to the form $\langle A \rangle_0 + \langle A \rangle_2$ for plane spinors of $\mathcal{G}_{0,2}(\mathbb{R}) \sim \mathcal{G}_{3,0}^+$.

³⁰⁴ Just as David Hestenes [6], [10], [5], [33], etc. uses the real field in his new foundation of geometric algebra for physics.

- 251

For quotation reference use: ISBN-13: 978-8797246931

aterial from hardback: ISBN-13: 978-8797246931, paperback: ISBN-13: 978-8797246948, Kindle and PDF-file: ISBN-13: 978-87972469

(6

Table 6.1 Multiplication basis for $\mathcal{G}_{2,0}$.

	left*	1	σ_1	σ ₂	σ ₂₁
ebra.	1	1	σ ₁	σ_1	σ ₂₁
to	σ_1	σ_1	1	-σ ₂₁	-σ ₂
with	σ ₂	σ ₂	σ ₂₁	1	σ_1
	σ ₂₁	σ ₂₁	σ ₂	$-\boldsymbol{\sigma}_1$	-1