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6.3.6. Rotation of Multivectors 
After this, we rotate a bivector (5.58)  BB =  = 1

2( )  by rotating each 1-vector 

(6.86) B = B = ( ) = 1
2 ( ) =  12( ) =  = BB . 

here we used that =1.301 That is simple,  rotates a bivector to a bivector just as a 
1-vector rotates to a 1-vector. The unit pqg-3 trivector  as chiral volume pseudoscalar  
commute with all terms in the ( ) algebra therefor 

(6.87) = =  
 is rotation invariant.  The scalar  is of cause too rotation invariant 

(6.88) = = =  
We here see that rotation   preserve grades in the ( ) geometric algebra  

(6.89) = =  
All these grades are connected in rotation by e.g. 

(6.90)  B =  B = B =  B      and    B = b         b = b = bb . 
We then conclude that all multivectors constructed of a polynomial of all grades 

(6.91) = + + + +  
rotates in the same manner without mixing the grades. 
In the traditional matrix representation in frame coordinates, this is called an orthogonal rotation. 

6.3.7. Framing a Field for  Geometric Algebra in -space 
Giving a dextral (righthanded) orthonormal basis  e , =1,2,3 = {e , ee , ee }  as a founding object 
for a Cartesian coordinate system302 for a straight-line field structure in -space. We can obtain 
any local orthonormal (standard) frame by an orthogonal rotation in the canonical form 

(6.92) = e  
This operation303 is a mapping of the frame 

(6.93) {e , e , e } { , , }. 
The inverse mapping 

(6.94) { , , } {e , e , e }, 
with the inverse operation 

(6.95) e = , 

due to = = 1. 
Alternatively, the local frame can be expressed by a rotation matrix 

(6.96) e = ,        = ,  
The matrix elements can be solved as a scalar function of   

(6.97) , = e = ( e ) e =   e e . 
or 

(6.98) ,  = e = ( ) =   . 
To do this the reader can study this further in the literature, e.g., [10]p.286ff. 

 
301 This deduction is inspired by [18] p48. 
302 Where e e , e e , e e , and |e | = |e | = |e | = 1,  as orthonormal e e = e e + e e = , , = 1,2,3. 

And where translation invariance is presumed obvious as well as we have Galileo translation invariance over time. 
Different local points P in  space relative to an origo O for the basis  {O, e , e , e } is a problem we already know. 

303 This is written conversely to [5]p.23-24 and [10]3.31p.286. 
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6.4. The Geometric Clifford Algebra 
Due to Hestenes, Clifford called his multiplication algebra for Geometric Algebra, so here we call 
the real Clifford algebra for Geometric Algebra with the terms = ( )= ( , )~ ( , ). 
This type of linear algebra can be equipped with different types of basis vectors.   E.g.: 

( ) has the intuit object standard basis  { , , }  of 1-vectors, where   =  =  = 1.  
Further the dual basis { , , } = { 3 2,   1 3,  2 1} of bivectors, where   =  =  = 1, 
is intuited as a subject orthonormal basis for the substance idea of planes in -space of physics. 

6.4.1.1. The Quadratic Form in general 
It is now time to expand the metric quadratic form from (5.37) and (5.42) v = (v) , 
Where we have the possible signatures = 1,0, 1. We can construct a linear space of 
dimension = dim( ) where the generating 1-vector spaces  has positive signed quadrats 
and the rest of dimensions  has negative signed quadrats. 
We combined both by addition to a linear space = . 
Multiplication of these 1-vectors  

 , =1,2, … , , forming polynomial multivectors generating 
the linear spaces of the geometric algebra  ,   where = + , we define the quadratic form 

(6.99) ( ) = + +      
This geometric algebra  , ( ) = ( , ) is equal to a Clifford algebra , , , ( ) . 

6.4.1.2. The Clifford Algebra for Complex Numbers 
Short, the quadratic form also works for  :   ( ) = + + + ,   then we e.g., write 

( ) ~ ,              ( ) ~ ([ ], ),             ( ) ~ , ,   … 
We will not go further into this right here, but history is rich in this.  Anyway: 
The complex number  is good for the complex plane idea, such as the transversal plane concept. 
But: We here stick to the real field  for a general geometric algebra  , = , ( ) = ( , ).304 

6.4.1.3.  The simple Euclidean Plane Geometric Clifford Algebra 2,0 
A plane concept  we traditional span by the Cartesian coordinate system from the orthonormal 
basis set { , } as a 2-dimensional 1-vector space ( , ) the geometric algebra for this is ,  
and for this, we have the 2 = 4-dimensional linear mixed grades. 
The multivector for this has the grade structure   = + +    in , ( ). 
We name an orthonormal basis {1, , , 21 2 1 } for this, which have 
the group multiplication structure Table 6.1: 
Multiplication of all elements with 1 closes the 
multiplication group for this plane , = ( ) algebra. 
The  (pqg-2) unit bivector 21 2 1  squares to 

= 1,  reverses  12=  21  and anticommute with 
all 1-vectors in its own plane x = x . 
From this, we span the full multivector algebra = + +  for , . 
First, the scalar  = 1, where     and the general bivector  = , where  . 
Then we have that any 1-vector  is expressed in the odd algebra ,  as 

(6.100) =     x = +                 ( , )      in a matrix formulation. 
For this Cartesian plane, we have the quadratic metric xx = x = +  and general for a 
Euclidean space x = =  with the orthonormal basis = . 
To enrich the plane concept with the complex numbers , will be awkward when it comes to  

-space with , , instead we will stick to the form +  for plane spinors of , ( )~ , . 

 
304 Just as David Hestenes [6], [10], [5], [33], etc. uses the real field in his new foundation of geometric algebra for physics. 

Table 6.1 Multiplication basis for , . 
left\*

\right 1     21 
 1  1       21 

    1 21  
    21     1     

  21 21   1 
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