

6.3.6. Rotation of Multivectors

After this, we rotate a bivector (5.58) $\mathrm{B}=\mathbf{c} \wedge \mathbf{a}=\frac{1}{2}(\mathbf{c a}-\mathbf{a c})$ by rotating each 1 -vector (6.86) $\quad \mathcal{R} \mathbf{B}=U \mathbf{B} U^{\dagger}=U(\mathbf{c} \wedge \mathbf{a}) U^{\dagger}=\frac{1}{2} U(\mathbf{c a}-\mathbf{a c}) U^{\dagger}=\frac{1}{2}\left(U \mathbf{c} U^{\dagger} U \mathbf{a} U^{\dagger}-U \mathbf{a} U^{\dagger} U \mathbf{c} U^{\dagger}\right)=\mathbf{c}^{\prime} \wedge \mathbf{a}^{\prime}=\mathbf{B}^{\prime}$
here we used that $U^{\dagger} U=1 .{ }^{301}$ That is simple, \mathcal{R} rotates a bivector to a bivector just as a
1 -vector rotates to a 1 -vector. The unit pqg-3 trivector \boldsymbol{i} as chiral volume pseudoscalar $\langle A\rangle_{3}$ commute with all terms in the $\mathcal{G}_{3}(\mathbb{R})$ algebra therefor

$$
U \boldsymbol{i} U^{\dagger}=U U^{\dagger} \boldsymbol{i}=\boldsymbol{i}
$$

\boldsymbol{i} is rotation invariant. The scalar $\langle A\rangle_{0}$ is of cause too rotation invarian $\underline{\mathcal{R}}\langle A\rangle_{0}=U\langle A\rangle_{0} U^{\dagger}=U U^{\dagger}\langle A\rangle_{0}=\langle A\rangle_{0}$
We here see that rotation $\underline{\mathcal{R}}$ preserve grades in the $\mathcal{G}_{3}(\mathbb{R})$ geometric algebra $\underline{\mathcal{R}}\langle A\rangle_{r}=U\langle A\rangle_{r} U^{\dagger}=\langle A\rangle_{r}^{\prime}$
All these grades are connected in rotation by e.g
(6.90) $\quad\left(i \underline{\mathcal{R}} \mathrm{~B}=\boldsymbol{i} U \mathrm{~B} U^{\dagger}=U \boldsymbol{i} \mathrm{~B} U^{\dagger}=\boldsymbol{i} \mathrm{B}^{\prime} \quad\right.$ and $\left.\quad i \mathrm{~B}=-\mathrm{b}\right) \quad \Leftrightarrow \quad \mathcal{R} \mathrm{b}=U \mathrm{~b} U^{\dagger}=\mathrm{b}^{\prime}$

We then conclude that all multivectors constructed of a polynomial of all grades

$$
A=\langle A\rangle_{0}+\langle A\rangle_{1}+\langle A\rangle_{2}+\langle A\rangle_{3}+\cdot \cdot
$$

rotates in the same manner without mixing the grades.
In the traditional matrix representation in frame coordinates, this is called an orthogonal rotation.

6.3.7. Framing a Field for Geometric Algebra in 3-space

Giving a dextral (righthanded) orthonormal basis $\left\{\mathbf{e}_{j}, j=1,2,3\right\}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ as a founding object for a Cartesian coordinate system ${ }^{302}$ for a straight-line field structure in \mathcal{J}-space. We can obtain any local orthonormal (standard) frame by an orthogonal rotation in the canonical form $\sigma_{j}=U \mathbf{e}_{j} U^{\dagger}$
This operation ${ }^{303}$ is a mapping of the frame
$\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\} \rightarrow\left\{\boldsymbol{\sigma}_{1}, \sigma_{2}, \sigma_{3}\right\}$.
The inverse mapping
$\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\} \rightarrow\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}$,
with the inverse operation

$$
\mathbf{e}_{k}=U^{\dagger} \sigma_{k} U
$$

due to $U U^{\dagger}=U^{\dagger} U=1$.
Alternatively, the local frame can be expressed by a rotation matrix

$$
\mathbf{e}_{k}=\alpha_{j, \mathrm{k}} \boldsymbol{\sigma}_{j} \quad=\sum_{j} \alpha_{j, \mathrm{k}} \boldsymbol{\sigma}_{j}
$$

The matrix elements can be solved as a scalar function of U

$$
\alpha_{k, j}=\sigma_{k} \cdot \mathbf{e}_{j}=\left(U \mathrm{e}_{k} U^{\dagger}\right) \cdot \mathrm{e}_{j}=\left\langle U \mathrm{e}_{k} U^{\dagger} \mathrm{e}_{j}\right\rangle_{0}
$$

or

$$
\alpha_{j, k}=\sigma_{j} \cdot \mathbf{e}_{k}=\sigma_{j} \cdot\left(U^{\dagger} \sigma_{k} U\right)=\left\langle\sigma_{j} U^{\dagger} \sigma_{k} U\right\rangle_{0} .
$$

To do this the reader can study this further in the literature, e.g., [10]p.286ff.
${ }^{301}$ This deduction is inspired by [18] p48
${ }^{302}$ Where $\mathbf{e}_{2} \perp \mathbf{e}_{1}, \mathbf{e}_{3} \perp \mathbf{e}_{2}, \mathbf{e}_{1} \perp \mathbf{e}_{3}$, and $\left|\mathbf{e}_{1}\right|=\left|\mathbf{e}_{2}\right|=\left|\mathbf{e}_{3}\right|=1$, as orthonormal $\mathbf{e}_{j} \cdot \mathbf{e}_{k}=\frac{1}{2}\left(\mathbf{e}_{j} \mathbf{e}_{k}+\mathbf{e}_{j} \mathbf{e}_{k}\right)=\delta_{j k}, j, k=1,2,3$, And where translation invariance is presumed obvious as well as we have Galileo translation invariance over time. Different local points P in 3 space relative to an origo O for the basis $\left\{\mathrm{O}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is a problem we already know. ${ }^{303}$ This is written conversely to [5]p.23-24 and [10]3.31p.286.
© Jens Erfurt Andresen, M.Sc. Physics, Denmark - $250-\quad$ Research on the a priori of Physics

6.4. The Geometric Clifford Algebra

Due to Hestenes, Clifford called his multiplication algebra for Geometric Algebra, so here we call the real Clifford algebra for Geometric Algebra with the terms $\mathcal{G}_{n}=\mathcal{G}_{n}(\mathbb{R})=\mathcal{G}\left(V_{n}, \mathbb{R}\right) \sim C \ell_{n}(V, \mathbb{R})$. This type of linear algebra can be equipped with different types of basis vectors. E.g.:
$\mathcal{G}_{3}(\mathbb{R})$ has the intuit object standard basis $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ of 1-vectors, where $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=1$. Further the dual basis $\left\{\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right\}=\left\{\sigma_{3} \sigma_{2}, \sigma_{1} \sigma_{3}, \sigma_{2} \sigma_{1}\right\}$ of bivectors, where $\boldsymbol{i}_{1}^{2}=\boldsymbol{i}_{2}^{2}=\boldsymbol{i}_{3}^{2}=-1$, is intuited as a subject orthonormal basis for the substance idea of planes in 3 -space of physics.

6.4.1.1. The Quadratic Form in general

It is now time to expand the metric quadratic form from (5.37) and (5.42) $\mathbf{v}^{2}=\boldsymbol{Q}(\mathrm{v}) \epsilon_{A}$, Where we have the possible signatures $\epsilon_{A}=1,0,-1$. We can construct a linear space of dimension $n=\operatorname{dim}\left(V_{n}\right)$ where the generating 1-vector spaces V_{p} has positive signed quadrats and the rest of dimensions $V_{q=n-p}$ has negative signed quadrats
We combined both by addition to a linear space $V_{n}=V_{p} \oplus V_{q}$.
Multiplication of these 1 -vectors $v_{k} \in V_{n}, k=1,2, \ldots, n$, forming polynomial multivectors generating the linear spaces of the geometric algebra $\mathcal{G}_{p, q} \leftarrow \mathcal{G}_{n}$ where $n=p+q$, we define the quadratic form

$$
Q(v)=v_{1}^{2}+\cdots+v_{p}^{2}-v_{p+1}^{2}-\cdots-v_{p+q}^{2} \in \mathbb{R}
$$

This geometric algebra $\mathcal{G}_{p, q}(\mathbb{R})=\mathcal{G}\left(V_{n}, \mathbb{R}\right)$ is equal to a Clifford algebra $C \ell_{p, q}\left(\forall v \in V_{n}, \mathbb{R}, Q(v)\right)$.

6.4.1.2. The Clifford Algebra for Complex Numbers

Short, the quadratic form also works for $\mathbb{C}: Q(z)=z_{1}^{2}+z_{2}^{2}+\cdots+z_{n}^{2}$, then we e.g., write $C \ell_{0}(\mathbb{C}) \sim \mathbb{C}, \quad C \ell_{1}(\mathbb{C}) \sim([\mathbb{C}], \mathbb{C}), \quad C \ell_{2}(\mathbb{C}) \sim\left(\left[\begin{array}{ll}\mathbb{C} & \mathbb{C} \\ \mathbb{C} & \mathbb{C}\end{array}\right], \mathbb{C}\right)$,
We will not go further into this right here, but history is rich in this. Anyway:
The complex number \mathbb{C} is good for the complex plane idea, such as the transversal plane concept. But: We here stick to the real field \mathbb{R} for a general geometric algebra $\mathcal{G}_{p, q}=\mathcal{G}_{p, q}(\mathbb{R})=\mathcal{G}\left(V_{n}, \mathbb{R}\right)$. ${ }^{30}$
6.4.1.3. The simple Euclidean Plane Geometric Clifford Algebra $\mathcal{G}_{2,0}$

A plane concept \mathfrak{B} we traditional span by the Cartesian coordinate system from the orthonormal basis set $\left\{\sigma_{1}, \sigma_{2}\right\}$ as a 2 -dimensional 1-vector space $\left(V_{2}, \mathbb{R}\right)$ the geometric algebra for this is $\mathcal{G}_{2,0}$ and for this, we have the $2^{2}=4$-dimensional linear mixed grades.
The multivector for this has the grade structure $A=\langle A\rangle_{0}+\langle A\rangle_{1}+\langle A\rangle_{2}$ in $\mathcal{G}_{2,0}(\mathbb{R})$.
We name an orthonormal basis $\left\{1, \sigma_{1}, \sigma_{2}, \sigma_{21}:=\sigma_{2} \sigma_{1}\right\}$ for this, which have
the group multiplication structure Table 6.1:
Multiplication of all elements with -1 closes the multiplication group for this plane $\mathcal{G}_{2,0}=\mathcal{G}_{2}(\mathbb{R})$ algebra The $\langle A\rangle_{2}(p q g-2)$ unit bivector $\sigma_{21}:=\sigma_{2} \sigma_{1}$ squares to $\sigma_{21}^{2}=-1$, reverses $\sigma_{12}=-\sigma_{21}$ and anticommute with
Table 6.1 Multiplication basis for $\mathcal{G}_{2,0}$.

leffl	*ight	1	σ_{1}	σ_{2}
σ_{21}				
1	1	σ_{1}	σ_{1}	σ_{21}
σ_{1}	σ_{1}	1	$-\sigma_{21}$	$-\sigma_{2}$
σ_{2}	σ_{2}	σ_{21}	1	σ_{1}
σ_{21}	σ_{21}	σ_{2}	$-\sigma_{1}$	-1

From this, we span the full multivector algebra $A=\langle A\rangle_{0}+\langle A\rangle_{1}+\langle A\rangle_{2}$ for $\mathcal{G}_{2,0}$.
First, the scalar $\langle A\rangle_{0}=\alpha 1$, where $\alpha \in \mathbb{R}$ and the general bivector $\langle A\rangle_{2}=\beta_{3} \sigma_{21}$, where $\beta_{3} \in \mathbb{R}$. Then we have that any 1 -vector $\langle A\rangle_{1}$ is expressed in the odd algebra $\mathcal{G}_{2,0}^{-}$as

$$
\langle A\rangle_{1}=\mathrm{x}=x_{1} \sigma_{1}+x_{2} \sigma_{2} \quad \leftrightarrow \quad\left(x_{1}, x_{2}\right)\binom{\sigma_{1}}{\sigma_{2}} \quad \text { in a matrix formulation. }
$$

For this Cartesian plane, we have the quadratic metric $\mathrm{xx}=\mathrm{x}^{2}=x_{1}^{2}+x_{2}^{2}$ and general for a Euclidean space $\mathrm{x}^{2}=x_{k} x_{k}=\sum_{k} x_{k}^{2}$ with the orthonormal basis $\sigma_{k} \cdot \sigma_{j}=\delta_{k j}$.
To enrich the plane concept with the complex numbers \mathbb{C}, will be awkward when it comes to 3 -space with $\mathcal{G}_{3,0}$, instead we will stick to the form $\langle A\rangle_{0}+\langle A\rangle_{2}$ for plane spinors of $\mathcal{G}_{0,2}(\mathbb{R}) \sim \mathcal{G}_{3,0}^{+}$.
${ }^{304}$ Just as David Hestenes [6], [10], [5], [33], etc. uses the real field in his new foundation of geometric algebra for physics. © Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-251-\quad$ Volume I, - Edition 2-2020-22, - Revision $6, \quad$ December

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

