Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

6.3.5. Multiplication Combination of Rotors

6.3.5.1. The Unitary group $U(1)$ for Plane Combination of Rotors

The unitary plane 1 -spinor rotor U belong to the simple unitary group $U(1)$. We have its elements as complex functions $u: \phi \rightarrow e^{i \phi} \in \mathbb{C}$ of one parameter $\phi \in \mathbb{R}$, which is commutative in multiplication inherited from the additive commutative of the parameter, due to the rule from (1.55): $u\left(\phi_{1}\right) \cdot u\left(\phi_{2}\right)=u\left(\phi_{1}+\phi_{2}\right) \sim e^{i \phi_{1}} e^{i \phi_{2}}=e^{i\left(\phi_{1}+\phi_{2}\right)}$, thus $U(1)$ is an Abelian, unitary since $u^{*} u=1$, as well as a group, since u and u^{*} are each other's multiplicative inverse, by the neutral element. This one parameter group is cyclic identical as (1.56): $u(2 \pi \mathrm{n})=e^{2 \pi \mathrm{n}}=e^{0}=1$, for $\forall n \in \mathbb{Z}$. We will call these Abelian elements isomorph with 1-rotors of the geometric algebra. The circular rotation substance has a primary quality of even grades 0 and 2, given by $U(1)$. The elements in the group $U(1), u: \phi \rightarrow U_{\phi}$, give subjects in the geometric algebra $\mathcal{G}_{3}^{+}(\mathbb{R})$ by a rotor $\langle A\rangle_{0,2}^{+}=U_{\phi}=v u$, with the one parameter $\phi=2 \Varangle(\mathrm{v}, \mathrm{u})$, for 3 -space of physics.
The mandatory issue here is that the $U(1)$ multiplicative Abelian group is substantially connected to the plane idea. In $\mathcal{3}$-space idea, we are forced to look at an idea of a bivector $i \widehat{\omega}$ for the transversal plane direction to implicitly to a 1-vector direction $\widehat{\omega}$ with the plane operator
$U_{\phi \widehat{\omega}}=e^{i \widehat{\omega}^{1 / 2} \phi}$, with the transversal plane Abelian rule $U_{\left(\phi_{1}+\phi_{2}\right) \widehat{\omega}}=U_{\phi_{1} \widehat{\omega}} U_{\phi_{2} \widehat{\omega}}=U_{\phi_{2} \widehat{\omega}} U_{\phi_{1} \widehat{\omega}}$.
6.3.5.2. Multiplication Combination of Direction Different 1-rotors in 3-space Different rotation directions can be combined. First, we look at different 1-vector directions $\widehat{\omega}$, $\widehat{\omega}_{1}$ and $\widehat{\omega}_{2}$, thus $\widehat{\omega}_{1} \neq \widehat{\omega}_{2}$, geometrically $\widehat{\omega}_{1} \nVdash \widehat{\omega}_{2}$. From these we have plane directions $\boldsymbol{i} \widehat{\omega}_{1}$ and $\boldsymbol{i} \widehat{\omega}_{2}$, in which the angular 1-rotors have different pqg-2 directions

$$
U_{1}=U_{\theta_{1} \widehat{\omega}_{1}}=e^{i \widehat{\omega}_{1}^{1} / 2 \theta_{1}}, \quad \text { and } \quad U_{2}=U_{\theta_{2} \widehat{\omega}_{2}}=e^{i \widehat{\widehat{\omega}_{2}} 1 / 2 \theta_{2}} \quad \in \mathcal{G}_{3}^{+}(\mathbb{R}) \subset \mathcal{G}_{3}(\mathbb{R})
$$

These two subject 1-rotors we intuit as products of three unit 1-vector objects u, v and w and write $U_{1}=\mathrm{vu} \rightarrow \odot$ and $U_{2}=\mathrm{wv} \rightarrow \odot$ displayed in Figure 6.13. From these, we make the rotor product
$U_{3}=U_{2} U_{1}=U_{2} U_{1}=(\mathrm{wv})(\mathrm{vu})=\mathrm{wu} \rightarrow \odot$
We see that these two circular rotors U_{1} and U_{2} intersect along the 1 -vector object v , representing the a priori intuition for the interaction of the product of the two rotors.

Figure 6.13 Rotor multiplication in 3 space gives $U_{3}=U_{2} U_{1}=(w v)(v u)=w u$, as an arc object on the unit sphere that result in a new circular plane direction \odot. v represents the intersecting 1 -vector interaction.

Figure 6.14 Non-commuting rotors $U_{2} U_{1} \not \not \not U_{1} U_{2}$ $U_{4}=U_{1} U_{2}=\left(u^{\prime} v\right)\left(v^{\prime}\right)=u^{\prime} w^{\prime}=(v u v v)(v v w v)=v u w v$. Different directions for these two resulting planes. Four regular circular rotations $\underline{\mathcal{R}}_{k}=U_{k}^{2}=e^{i \widehat{\omega}_{k} \theta_{k}}$.

The rotors U_{k} are rotation-invariant in each their own circular plane (around in a whole circle \odot). Although circular rotors commute with others in that same plane, between externally different planes they do not commute: $U_{2} U_{1} \not \approx U_{1} U_{2}$ as illustrated in Figure 6.14. To understand this, we auto-rotate the invariant rotors by using the symmetry of a unit 1-vector $\mathrm{vv}=\mathrm{v}^{2}=1$

$$
U_{1}=\mathrm{vu}=\mathrm{vuvv}=\mathrm{u} ' \mathrm{v} \quad \text { and } \quad U_{2}=\mathrm{wv}=\mathrm{vvwv}=\mathrm{vw}^{\prime},
$$

where we have reflected u and w in v and achieved the new objects $u^{\prime}=v u v$ and $w^{\prime}=v w v .{ }^{298}$

$$
U_{4}=U_{1} U_{2}=U_{1} U_{2}=\left(u^{\prime} v\right)\left(v w^{\prime}\right)=u^{\prime} w^{\prime} \quad=(v u v v)(v v w v)=\text { vuwv. }
$$

Each regular circular rotation we represent as a squared rotor $\mathcal{R}_{k}=U_{k}^{2}=e^{i \widehat{\omega}_{k} \theta_{k}}$. (no k sum). In Figure 6.14 we see in all four circular plane directions of these.
When acting on a physical entity as one object represented by a 1 -vector direction we use the fundamental canonical form (sandwiching) for the operation $\mathcal{R}_{k} \mathbf{x}=U_{k}^{2} \mathbf{x}=U_{k} \mathbf{x} U_{k}^{\dagger}$ For the combined rotation by multiplication of rotor operators we write
$\mathbf{x}_{1,2}=\mathcal{R}_{1,2} \mathbf{x}=U_{1,2}^{2} \mathbf{x}=U_{1,2} \mathbf{x} U_{1,2}^{\dagger}=\left(U_{2} U_{1}\right) \mathbf{x}\left(U_{2} U_{1}\right)^{\dagger}=U_{3} \mathbf{x} U_{3}^{\dagger}$.
For the permutated rotor operator product $U_{2} U_{1}$ we write
$\mathbf{x}_{2,1}=\mathcal{R}_{2,1} \mathbf{x}=U_{2,1}^{2} \mathbf{x}=U_{2,1} \mathbf{x} U_{2,1}^{\dagger}=\left(U_{1} U_{2}\right) \mathbf{x}\left(U_{1} U_{2}\right)^{\dagger}=U_{4} \mathbf{x} U_{4}^{\dagger} \quad \not \approx \mathbf{x}_{1,2}$
The 2-rotors no longer belong to the Abelian group U (1) but is rather an isomorph to $S U$ (2). ${ }^{299}$
6.3.5.3. Comment on the Ontology of Directions and Possibility of Location

Are we caught in a trap? We know, we have the idea of a 1 -vector subject v as a translation invariant direction over all 3 -space. For intuition we define $v:=\overrightarrow{\mathrm{AB}}$ as an object of points we mark on a surface. The rotor objects we for intuition define as $U_{1}:=\mathrm{vu}$ and $U_{2}:=\mathrm{wv}$ have translation invariant subjects U_{1} and U_{2} with two independent arc-circular plane directions. These two pqg-2 directions U_{1} and U_{2} intersects in a pqg-1-vector subject v direction in 3-space sphere volume. When we imagine the two arc-circular plane rotor subject U_{1} and U_{2} qualities, we auto-inherit through the intersection the 1 -vector v direction quality. (as caught in a trap). Dependent on the two arc quantities of U_{1} and U_{2} we inherit two extra independent pqg-2 direction subjects defined by $U_{3}:=U_{2} U_{1}$ and $U_{4}:=U_{1} U_{2}$. Each of these two new arc-circular planes intersects the pqg-1-vector v direction in just one point as a center of locality for this situation. This subject center of locality is translations invariant as all the subjects U_{1}, U_{2}, \mathbf{v} and U_{3} or U_{4}. The situated center of the locality is caught in this trap we call a 2 -rotor. (isomorph with $S U(2)$)

- We as thinking observers are excluded from the external and can only point out some object mark-point as center on a chosen surface to symbolise the locus situs for this intuition. -

6.3.5.4. The Abstract Generalised Rotor Form

We have here above described the directional circular rotors (6.78) etc. as $U_{j}=e^{i \widehat{\omega} j^{1 / 2} \theta_{j}}$.
Each of these for $j \in \mathbb{N}$ describes its own independent plane pqg-2 direction by the unit bivectors $\boldsymbol{i}_{j}=\boldsymbol{i} \widehat{\boldsymbol{\omega}}_{j}$, endowed with an angular parameter θ_{j}. Then each rotor is just written ${ }^{300}$

$$
U_{j}=e^{i_{j}^{1 / 2} \theta_{j}} \quad \in \mathcal{G}_{3}^{+}(\mathbb{R}) \subset \mathcal{G}_{n}(\mathbb{R})
$$

These rotor operators have directions that act on what stands to the right in the writing and change the direction of these operands. Be careful, the multivectors of the simple form
are indeed not complex scalars but represent the geometrical direction in physical $\mathfrak{3}$-space $\subset \mathfrak{G}$.
${ }^{298}$ § 5.4.2.1 II. 5.4.2.1 Reflection in a Geometric 1 -vector.
${ }^{299}$ A practical physical example of this problem has been constructed in Rubrik's Cube, when we rotate in two or three plane (perpendicular) things get that complicated. The reader may look at [19] Figure.4.9-10p.164, or [10]Fig.3.5p.285. ${ }^{300}$ with the pure unitary complex number analogy $U=e^{-i^{1} / 2 \theta} \in \mathbb{C}$ as a scalar without any physical direction! © Jens Erfurt Andresen, M.Sc. NBI-UCPH, $-249-\quad$ Volume I, - Edition 2-2020-22, - Revision 6,

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

