The odd 3-multivector $\langle A\rangle_{1,3}^{-}$represents a physical extended ${ }^{158,293}$ entity with a pqg-1 length quantity a with magnitude $|\mathrm{a}|$ and a direction $\hat{\mathrm{a}}=\mathrm{a} /|\mathrm{a}|$, that is joined with a chiral pseudoscalar pqg-3 volume quantity $v \boldsymbol{i}$ with a scalar volume $v= \pm|v|$ factor (coordinate) as magnitude $|v i|$ and direction \boldsymbol{i}. A negative $v<0$ means a sinistral volume contra a dextral volume $v>0$. We now have a chiral pseudoscalar unit \boldsymbol{i} representing the primary quality of third grade, a chiral pqg-3direction that gives the necessary extended structure of \mathcal{Z}-space of physics.
6.3.3. Operational Structure of the Trivector Chiral Volume Pseudoscalar \boldsymbol{i} of \mathcal{Z} Space

In the text above, we have invented a unit subject \boldsymbol{i}, that when it with a multiplication operation on a 1 -vector object b creates a transversal plane subject bivector $\boldsymbol{i} \mathrm{b}$.
To instrumentalise this we choose locally an orthonormal standard frame basis set $\left\{\boldsymbol{\sigma}_{1}, \sigma_{2}, \sigma_{3}\right\}$ so that $\mathrm{b}=\beta \sigma_{3}$. Then we can write $\boldsymbol{i} \mathrm{b}=\beta \sigma_{2} \sigma_{1}=\beta \boldsymbol{i}$, where $\boldsymbol{i}=\boldsymbol{i}_{3}=\boldsymbol{i} \sigma_{3}$ is the transversal unit. When we further choose the object direction $\sigma_{1}=\mathbf{u} \perp \mathrm{b}$ and consider another 1-vector $\mathbf{r} \perp \mathrm{b}, \mathbf{r} \sharp \mathrm{u}$, we can construct a 1 -spinor multivector $\langle A\rangle_{0,2}^{+}=\mathbf{r} \cdot \mathbf{u}+\mathbf{r} \wedge \mathbf{u}=\mathbf{r u}=\rho \mathbf{v u}=\rho U=\rho e^{i \theta}$, with $\mathbf{r}=\rho \mathbf{v}$. Here we repeat that the scalar quantity $\mathbf{r} \cdot \mathbf{u}=\rho \cos \theta$ specifies the inner covariant scalar part from the 1 -rotor vu arc angle θ between the two chosen object 1 -vectors \mathbf{u} and \mathbf{v}. External to this scalar the bivector $\mathbf{r} \wedge \mathbf{u}=\boldsymbol{i} \rho \sin \theta=\sigma_{2} \boldsymbol{\sigma}_{1} \rho \sin \theta$ exist extended in the plane $\boldsymbol{i}=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$. The 1 -spinor $\langle A\rangle_{0,2}^{+}=\mathbf{r u}$ has an amplitude, magnitude $\rho=|\mathbf{r u}|$ as a transversal plane quantity. We now look at the normalized 1 -spinor as an exponential expanded (5.90),(5.191) 1 -rotor
$\frac{\langle A\rangle_{0}^{\dagger}, 2}{\left|\langle A\rangle_{0,2}^{+}\right|}=\mathrm{vu}=U=e^{i \theta}=\exp (\boldsymbol{i} \theta)=1+\frac{(\boldsymbol{i} \theta)}{1!}+\frac{(\boldsymbol{i} \theta)^{2}}{2!}+\frac{(\boldsymbol{i} \theta)^{3}}{3!}+\frac{(\boldsymbol{i} \theta)^{4}}{4!}+\frac{(\boldsymbol{i} \theta)^{5}}{5!}+\cdots$
The magnitude of this 1 -rotor (a unitary spinor) $\mathbf{v u}=U$ is always one $U U^{\dagger}=|\mathrm{vu}|^{2}=1$. The even exponents (5.92) of the bivector $(\boldsymbol{i} \theta)^{n}$ contribute to the pure scalar $\mathbf{v} \cdot \mathbf{u}=\cos \theta$, and the odd exponents (5.93) contribute to the bivector $\mathbf{v} \wedge \mathbf{u}=\boldsymbol{i} \sin \theta$. Here take $\widehat{\omega}=\sigma_{3}$ and forget implicit the basis $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ and instead use $\widehat{\omega} \perp \boldsymbol{i}$ as the frame for directions. From this we define the 1 -vector $\mathrm{b}=\beta \widehat{\boldsymbol{\omega}}$, from this we scale the transversal bivector $\boldsymbol{\theta}=\boldsymbol{i} \mathrm{b}=\boldsymbol{i} \beta$ for a rotation angular area around \mathbf{b}. For the 1 -rotor we have $\theta=1 / 2 \beta$ and $1 / 2 \boldsymbol{\theta}=\boldsymbol{i} \theta$, with a magnitude $\theta=|\boldsymbol{i} \theta|$ as the radian arc measure θ of the 1 -rotor angle, see Figure 5.47 where we have that angular sector areal is the half $|1 / 2 \boldsymbol{\theta}|$ of this with the pqg-2 direction bivector $\boldsymbol{\theta}=2 \boldsymbol{i} \theta$, with magnitude $2 \theta=\beta$. Hereby we express the regular rotation with this angular bivector as (5.193) from a 1 -vector object $\mathrm{x} \in \mathcal{G}_{3}(\mathbb{R})$
$\underline{\mathcal{R}} \mathbf{x}=U \mathbf{x} U^{\dagger}=e^{1 / 2 \boldsymbol{\theta}} \mathbf{x} e^{-1 / 2 \boldsymbol{\theta}}=e^{\boldsymbol{\theta}} \mathbf{x}=e^{i \theta} \mathbf{x} e^{-\boldsymbol{i} \theta}=e^{\boldsymbol{i} 2 \theta} \mathbf{x}$
In comparing this with the magnitude $|i \mathrm{~b}|=|\mathrm{b}|=|\beta|$ the reader is encouraged to consider the idea: the first choose $\beta=2 \theta$, so that the rotation axis direction 1 -vector b has magnitude $|\mathrm{b}|=|2 \theta|$ so that the 1 -rotor is $U=e^{1 / 2 \mathrm{ib}}$ and the regular rotation is

$\underline{\mathcal{R}} \mathbf{x}=U \mathbf{x} U^{\dagger}=e^{1 / 2 i \mathrm{~b}} \mathbf{x} e^{-1 / 2 i \mathrm{~b}}=e^{i \mathrm{~b}} \mathbf{x} \quad \in \mathcal{G}_{3}(\mathbb{R})$
Now we have defined an operator $\underline{\mathcal{R}}=e^{i \mathrm{~b}}$ that rotate a 1 -vector x direction in $\mathcal{3}$-space around another 1 -vector b direction, where the magnitude $|\mathrm{b}|=|2 \theta|$, equals the rotation angle. Then the transversal bivector $\boldsymbol{\theta}=\boldsymbol{i} \mathrm{b}$ exposes the rotation $\underline{\mathcal{R}} \mathbf{x}=U \mathbf{x} U^{\dagger}=e^{i \mathrm{~b}} \mathbf{x}$ as shown in Figure 6.12, which is a perspective that has its projection on plane \boldsymbol{i} in Figure 5.47.

Figure 6.12 Regular rotation around \mathbf{b} by an angle $\beta=2 \theta=|\mathbf{b}|$, driven by the unitary spinor rotor $U=e^{1 / 2 i b}$, through the operator $\mathcal{R}=e^{i \mathrm{i}}$ 1 -vector rotation: $\mathrm{x} \rightarrow \mathrm{y}=\mathcal{R}=U \mathrm{x}^{2}=U^{\dagger}=e^{i \mathrm{~b}}$, -vector rotation: $\mathrm{x} \rightarrow \mathrm{y}=\boldsymbol{\mathcal { R }} \mathrm{x}=U \mathrm{X} U^{\dagger}=e^{i b} \mathrm{x}$. The rotation 1-vector band its bivector $\boldsymbol{\theta}=i \mathrm{~b}$ direction $\boldsymbol{i}=\boldsymbol{i} \widehat{\omega}$. Then $U=e^{1 / 2 i \hat{\omega} \beta}=e^{1 / 2 i b}$.
(C) Wit

We have chosen the name $\widehat{\boldsymbol{\omega}}=\sigma_{3}$ for the unit pqg-1 direction. When we use $\widehat{\omega}$ as our angular reference frequency count $|\widehat{\omega}| \equiv 1$ and choose the phase development parameter $\beta=\left(t-x_{3} / c\right)$ we have the bivector exponential oscillation operator $e^{i \widehat{\omega}\left(t-x_{3} / c\right)}=e^{i \sigma_{3} \beta}$ in the transversal plane to $\widehat{\omega}$. This expresses the classical plane wave form, which is transversal to the propagation.
We desire is to make $\widehat{\omega}$ the normal rotation oscillation plane. We, therefore, led the unit bivector i represent this transversal plane, then we have $i=i \widehat{\omega} \in \mathcal{G}_{3}^{+}(\mathbb{R})$, and by that
$\widehat{\omega}=-\boldsymbol{i} \boldsymbol{i}$, where we simply have chosen $\left[|\widehat{\omega}|^{-1}=1\right]$ as the unit for the phase angle parameter β. For $\forall \beta \in \mathbb{R}$ we have a bivector argument in the rotation exponential $e^{i \beta}=e^{i \widehat{\omega} \beta} \in \mathcal{G}_{3}^{+}(\mathbb{R})$. The tradition uses the designation \mathbf{n} for a plane normal therefore $\widehat{\mathrm{b}}:=\mathbf{n}=\widehat{\omega}$, as the 1 -vector direction for a rotation axis object $\mathbf{b}=\beta \hat{\mathrm{b}} \in \mathcal{G}_{3}^{-}(\mathbb{R})$, where the magnitude $\beta=|\mathrm{b}|$ represents an angle in the transversal plane pqg-2direction for the bivector $\boldsymbol{i b}=\beta \boldsymbol{i} \hat{\mathrm{b}}=\boldsymbol{i} \beta$ subject in $\mathcal{G}_{3}^{+}(\mathbb{R})$. This is in the everyday world illustrated by pointing your index finger or arm towards the paper, a screen, a wall or even the celestial sky and you will realise that there is something transversal and by that, a space around your pointing, and we describe this connecting structure by the pqg-3 directional chiral volume pseudoscalar unit i as a primary quality of third grade (pqg-3). The idea \boldsymbol{i} has obtained the name pseudoscalar because 1 -dimensionality as (6.28), and in $\mathcal{G}_{3}(\mathbb{R})$ commutes with both 1 -vectors and bivectors: $\boldsymbol{i x}=\mathrm{X}=\mathrm{x} \boldsymbol{i}$ and $\boldsymbol{i B}=-\mathrm{b}=\mathrm{B} \boldsymbol{i}$, due to (6.33), (6.36) and the definition (6.21) just like a scalar multiplication. The reverse order orientation definition (6.23) $\widetilde{i}=-\boldsymbol{i}$ gives the pseudo quality, together with the fact that $i^{2}=-1$.
In this context, we remember that ordinary scalars commute with every kind of multivector.

6.3.4. Rotation in 3 -space

We got the insight that the essential concept of an 3 -space entity is rotation oscillation in a plane given by at least two unit 1-vector directions u and v forming a rotor concept by a product vu. Here we normalize the even spinor in \mathcal{G}_{3}^{+}by a rotor $\langle A\rangle_{0,2}^{+}=$vu. (with spinor radius $|r u|=|v u|=1$.) It is obvious, that a permutation reverses the orientation of the rotor plane pqg-2 direction. This we from (5.191) and (5.192) express as unitary operators
(6.71) $U=\mathrm{vu}=\mathrm{v} \cdot \mathrm{u}+\mathrm{v} \wedge \mathrm{u}=e^{+1 / 2 \boldsymbol{\theta}}=e^{+1 / 2 \mathrm{i} \mathrm{b}}=e^{+1 / 2 \mathrm{~b} \beta}=e^{+1 / 2 \boldsymbol{i} \beta} \quad=e^{+\boldsymbol{i} \theta}$
(6.72) $U^{\dagger}=\mathrm{uv}=\mathrm{v} \cdot \mathrm{u}-\mathrm{v} \wedge \mathrm{u}=e^{-1 / 2 \boldsymbol{\theta}}=e^{-1 / 2 \boldsymbol{i} \mathrm{~b}}=e^{-1 / 2 i \mathrm{~b} \beta}=e^{-1 / 2 i \beta}=e^{-\boldsymbol{i} \theta}$

Here we introduce the bivector $1 / 2 \boldsymbol{i b}=1 / 2 \boldsymbol{\theta}$ which represents the 1 -rotor area with direction, as an argument for the 2-multi-vector exponential function $e^{ \pm 1 / 2 i \mathrm{~b}}$, around the axis of rotation $\mathrm{b}=\beta \widehat{\omega}$. Hence, the regular rotation is a linear transformation along the transversal plane $\boldsymbol{i} \widehat{\boldsymbol{\omega}}$ is

Refer to section 5.4.5. The unitary U demand that $|U|^{2}=1$, by (6.71), (6.72) we have $|U|^{2}=U U^{\dagger}=$ vuuv $=e^{+1 / 2 i \mathrm{~b}} e^{-1 / 2 \mathrm{ib}}=1$
One essential thing here is that rotor U does not commutate with 1 -vectors \mathbf{x}. In (6.73) we have the two-sided multiplication operation (sandwiching) $\underline{\mathcal{R}} \mathbf{x}=U \mathbf{x} U^{\dagger} \in \mathcal{G}_{3}(\mathbb{R})$ We can also have situations where we use Left or Right multiplication operations:

$$
\underline{\mathcal{R}}_{L} \mathbf{x}=U \mathbf{x} \quad \text { or } \quad \mathcal{R}_{R} \mathbf{x}=U^{\dagger} \mathbf{x}=\mathbf{x} U
$$

$$
\in \mathcal{G}_{3}(\mathbb{R}) .
$$

Anyway U, U^{\dagger}, U^{2}, exist in the same plane direction, a transversal plane to one and the same 1 -vector direction, therefore we may always implicit presume a unit 1-vector direction $\widehat{\omega}$ for the transversal plane $\boldsymbol{i} \widehat{\omega}$. To be explicit we can write $U_{\theta \widehat{\omega}}, U_{\theta \widehat{\omega}}^{\dagger} U_{\beta \widehat{\omega}}^{2}$, and therefore
$\underline{\mathcal{R}}_{\beta \widehat{\omega}} \mathbf{x}=U_{\theta \widehat{\omega}} \mathbf{x} U_{\theta \widehat{\omega}}^{\dagger}=U_{\beta \widehat{\omega}}^{2} \mathbf{x}$, with $\beta=2 \theta$. As an operator we have an explicit example
$\underline{\mathcal{R}}_{\beta \widehat{\omega}}=U_{\beta \widehat{\omega}}^{2}$, where we have $U_{\theta \widehat{\omega}}=\underline{\mathcal{R}}_{L, \theta \widehat{\omega}}$ from the left, and $U_{\theta \widehat{\omega}}^{\dagger}=\mathcal{R}_{R, \theta \widehat{\omega}}$ from the right.

For quotation reference use: ISBN-13: 978-8797246931

