

6.3. The 3-space Structure Quality Described by Multivectors

A general arbitrary 3-multivector is constructed from four primary qualities of grades

$\boldsymbol{p q g}-0+\boldsymbol{p q g}-1+\boldsymbol{p q g}-2+\boldsymbol{p q g}-3$. The approach tries to add these different qualities together. A classical space solid object we have the tradition to define in a Euclidean vector space $\left(V_{3}, \mathbb{R}\right) \sim \mathbb{R}_{1}^{3}$ fixed to a standard orthonormal dextral basis $\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{\sigma}_{3}\right\}$ of three 1-vector objects. All 1-vectors in this Euclidean vector space possess the primary qualities of first grade (pqg-1). This basis implies the transversal bivector basis $\left\{\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right\}=\left\{\sigma_{3} \sigma_{2}, \boldsymbol{\sigma}_{1} \sigma_{3}, \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}\right\}$, (6.31), (6.34) as a generator of all planes possessing pqg-2 quality. On top of that we have trivector chiral pseudoscalar unit $i:=\sigma_{3} \sigma_{2} \sigma_{1}$ generating the chiral volume possessing pqg-3 quality.
In all, we expand a multivector form from the geometric algebra $\mathcal{G}_{3}=\mathcal{G}_{3}(\mathbb{R})=\mathcal{G}\left(V_{3}, \mathbb{R}\right)$ as
$A=\alpha+\underbrace{x_{1} \sigma_{1}+x_{2} \sigma_{2}+x_{3} \sigma_{3}}+\underbrace{\beta_{1} \boldsymbol{i}_{1}+\beta_{2} \boldsymbol{i}_{2}+\beta_{3} \boldsymbol{i}_{3}}+v \boldsymbol{i}$
$A=\langle A\rangle_{0}+\quad\langle A\rangle_{1} \quad+\quad\langle A\rangle_{2}+\langle\mathrm{A}\rangle_{3}$
Refer to:
(6.32), (6.33), (6.36) | (6.15) in 6.2.2
(6.60)
(6.61)
(6.62)
(6.63)
(6.64) Th

The linear algebra $\mathcal{G}_{3}=\mathcal{G}_{3}(\mathbb{R})$ has more dimension from the different grade qualities, in all $\operatorname{dim}\left(\mathcal{G}_{3}\right)=1+3+3+1=8$ $\begin{array}{cc}\operatorname{dim}\left(\mathcal{G}_{3}\right)=1+3+3+1=8 . & \text { In generell, } \operatorname{dim}\left(\mathcal{G}_{n}\right)=\sum_{r=0}^{n}\binom{n}{r}=2^{n} \\ \text { The mixed basis for the whole linear algebra } \mathcal{G}_{3} & \text { is }\left\{1, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{3} \sigma_{2}, \sigma_{1} \sigma_{3}, \sigma_{2} \sigma_{1}, \sigma_{3} \sigma_{2} \sigma_{1}\right\}\end{array}$
3.2. The Even and the Odd Geometric Algebra

When we split this algebra in even \mathcal{G}_{3}^{+}and odd \mathcal{G}_{3}^{-}, so $\mathcal{G}_{3}=\mathcal{G}_{3}^{-}+\mathcal{G}_{3}^{+}$, we write the multivector

$$
A=\langle A\rangle^{+}+\langle A\rangle^{-}=\langle A\rangle_{0,2}^{+}+\langle A\rangle_{1,3}^{-}=\underbrace{\alpha+\mathbf{b} i}+\underbrace{\mathbf{a}+v i}
$$

when algebra \mathcal{G}_{3}^{+}is a closed multiplication spinor algebra, while \mathcal{G}_{3}^{-}is open, not closed. The spinor multivector subject can be expressed as a 1-rotor multiplied with a real dilation factor $\langle A\rangle^{+}=\langle A\rangle_{0,2}^{+}=\langle A\rangle_{0}+\langle A\rangle_{2}=\alpha+\mathbf{b} \boldsymbol{i}=\mathbf{r} \cdot \mathbf{u}+\mathbf{r} \wedge \mathbf{u}=\mathbf{r u}=\rho U=\rho e^{\boldsymbol{i} \theta} \quad \in \mathcal{G}_{3}^{+}(\mathbb{R})$, as in (5.163) origin in (5.97), where the rotation is in the plane of the bivector $\mathbf{b} \boldsymbol{i}=\mathbf{r} \wedge \mathbf{u}$. You may define two object 1 -vectors whose product spinor ru determines the rotation, and dilation $\rho=|\mathbf{r u}|$. (We prefer to choose $|\mathbf{u}|=1$ so that $\rho=|\mathbf{r}|$ if it is possible.) ${ }^{297}$
If you determine the 1 -vector $\mathbf{b}=-i(\mathbf{r} \wedge \mathbf{u})$ as an object it will represent the rotation axis for $\langle A\rangle^{+}$ This rotation axis has a transversal plane direction in which \mathbf{r} and \mathbf{u} exist.

The odd algebra $\mathcal{G}_{3}^{-}(\mathbb{R})$ part substance of 3 -space gives us subjects $\langle A\rangle_{1,3}^{-}=\mathbf{a}+v \boldsymbol{i}$. The geometric 1 -vector can give us a straight rectilinear translation as in §4.4.2.13 and § 5.3.7.2 by the subject $\mathrm{t}=\mathrm{a}$, or by the 1 -vector object a representing a pqg-1 direction and a straight line-segment magnitude $|a|$ for a physical entity. The new $\boldsymbol{p q g}$ - 3 subject vi gives us a chiral-directed volume of a solid spatial entity object, as a chiral quality pqg-3.

[^0]For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

[^0]: ${ }^{297}$ I think that there could be a little problem here; if we find \mathbf{r} and \mathbf{u} colinear $\mathbf{r} \wedge \mathbf{u}=0 \Leftrightarrow \mathbf{b}=0$ then the spinor is a pure scalar $\mathbf{r} \cdot \mathbf{u}$, and by that, does a pure scalar spinor gives any sense, even if it has a final magnitude $|\mathrm{ru}|>0$? Oscillations will resolve this.
 (C) Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-245-\quad$ Volume I, - Edition 2-2020-22, - Revision 6, \quad December 2022

