Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931
(6.45) $\quad \mathrm{aB}=\mathrm{a}(\mathrm{b} \wedge \mathrm{c}) \quad$ or $\quad \mathrm{Ba}=(\mathrm{b} \wedge \mathrm{c}) \mathrm{a}$

These by (6.40), (6.43) and (6.38) consist of a 1 -vector part $\langle\mathrm{aB}\rangle_{1}$ plus a trivector part $\langle\mathrm{aB}\rangle_{3}$.

6.2.5.4. The Simple Product of Three 1-vectors

Further by the associative law (5.38), we define a 3-multivector product of three 1-vectors

$$
\mathrm{abc}=\mathrm{a}(\mathrm{bc})=(\mathrm{ab}) \mathrm{c}
$$

From the origin 2-vector product (5.59) of two 1 -vectors $\mathbf{a b}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \wedge \mathbf{b}$, we get
$\mathbf{a}(\mathrm{b} \cdot \mathrm{c}+\mathrm{b} \wedge \mathrm{c})=(\mathrm{a} \cdot \mathrm{b}+\mathrm{a} \wedge \mathrm{b}) \mathbf{c}=\mathrm{ab}$
and by applying (6.40) with the distributive rules (5.39) and (5.40) we have
(6.48) $\quad \underbrace{\mathrm{a}(\mathrm{b} \cdot \mathrm{c})+\mathrm{a} \cdot(\mathrm{b} \wedge \mathrm{c})}+\underbrace{\mathrm{a} \wedge(\mathrm{b} \wedge \mathrm{c})}=\underbrace{(\mathrm{a} \cdot \mathrm{b}) \mathrm{c}+(\mathrm{a} \wedge \mathrm{b}) \cdot \mathrm{c}}+\underbrace{(\mathrm{a} \wedge \mathrm{b}) \wedge \mathrm{c}}=\mathrm{abc} \in \mathcal{G}_{3}^{-}(\mathbb{R})$

For this simple product abc, the scalar $\langle\mathrm{abc}\rangle_{0}=0$ and the bivector $\langle\mathrm{abc}\rangle_{2}=0$ part vanish
At orthogonality $\langle\mathrm{abc}\rangle_{1}=0$, then we just have $\mathrm{abc}=\langle\mathrm{abc}\rangle_{3}= \pm|\mathrm{abc}| i$ with chiral direction.

6.2.5.5. Even and Odd Multivector in general

For the \mathfrak{P} plane concept, we from (5.162) have resolved a general 2-multivector as

$$
A=\langle A\rangle_{0}+\langle A\rangle_{1}+\langle A\rangle_{2} \in \mathcal{G}_{2}(\mathbb{R}) .
$$

For the 3 -space concept, we resolve a general 3 -multivector as

$$
A=\langle A\rangle_{0}+\langle A\rangle_{1}+\langle A\rangle_{2}+\langle A\rangle_{3} \in \mathcal{G}_{3}(\mathbb{R}) .
$$

A generalised a n-multivector in $\mathcal{G}_{n}(\mathbb{R})$ we resolve in grades r and write it as
(6.51) $\quad A=\sum_{r}^{n}\langle A\rangle_{r}=\langle A\rangle_{0}+\langle A\rangle_{1}+\langle A\rangle_{2}+\langle A\rangle_{3}+\cdots+\langle A\rangle_{n} \quad \in \mathcal{G}_{n}(\mathbb{R})$.

A multivector that is simply graded as $A=\langle A\rangle_{r}=A_{\bar{r}}$ is called homogeneous of grader r and often named a r-blade or just a simple r-vector with a primary quality of r 'th grade.
A r-blade or a simple r-vector representing a pqg-r direction
E.g., simply: trivector as 3 -blade, bivector as a 2 -blade, 1 -vector as a 1 -blade, and scalar as 0 -blade

Later we will introduce a 4 -vector as a 4 -blade, etc.
The multivector A is called

- odd when $\langle A\rangle_{r}=0$ for all even $r,\langle A\rangle_{-}=\langle A\rangle_{1}+\langle A\rangle_{3}+\cdots \quad$ or
- even when $\langle A\rangle_{r}=0$ for all odd $r,\langle A\rangle_{+}=\langle A\rangle_{0}+\langle A\rangle_{2}+\cdots$

In general, all multivectors can be separated

$$
A=\langle A\rangle_{+}+\langle A\rangle_{-}
$$

Now we see that (5.59) ab $=\mathbf{a} \cdot \mathrm{b}+\mathrm{a} \wedge \mathrm{b}$ is even, $\quad \mathrm{ab}=\langle\mathrm{ab}\rangle_{+}=\langle\mathrm{ab}\rangle_{0}+\langle\mathrm{ab}\rangle_{2}$, and that (6.46)-(6.48) is odd, $\mathbf{a b c}=\langle\mathbf{a b c}\rangle_{-}$, as well as the 1 -vector $\mathbf{a}=\langle\mathbf{a}\rangle_{-}$is odd

6.2.5.6. Product of Two Bivectors

We look at two bivectors B and $A=a_{2} \wedge a_{1}=a_{2} a_{1}$ (where $a_{2} \cdot a_{1}=0$). We form the product

$$
A B=a_{2} a_{1} B=a_{2}\left(a_{1} \cdot B+a_{1} \wedge B\right)=a_{2} \cdot\left(a_{1} \cdot B\right)+a_{2} \wedge\left(a_{1} \cdot B\right)+a_{2} \cdot\left(a_{1} \wedge B\right)+a_{2} \wedge a_{1} \wedge B
$$

$$
=A \cdot B+\frac{1}{2}\left(a_{2} a_{1} B-B a_{2} a_{1}\right)+A \wedge B=A \cdot B+\frac{1}{2}(A B-B A)+A \wedge B=A \cdot B+A \times B+A \wedge B .
$$

Where we have used (6.42) and introduced the commutator product

This deduction works for any simple grade r-blade $B=\langle B\rangle_{r}=B_{r}$, special $\mathrm{B}=\langle\mathrm{B}\rangle_{2},[13]$ p.10,(1.37). The inner product of bivectors is a scalar $\mathrm{A} \cdot \mathrm{B}=\langle\mathrm{AB}\rangle_{0} \in \mathbb{R}$, just like two equal grade- r-blades. ${ }^{296}$ In a pure 3 -space due to (6.35) the outer product of two bivectors vanish $\mathrm{A} \wedge \mathrm{B}=0$.
${ }^{296}$ This is taken from [13]p.6,(1.21) for the general definition of the inner product of blades $A_{\vec{r}} \cdot B_{\bar{s}} \equiv\left\langle A_{\bar{r}} B_{\bar{s}}\right\rangle_{|r-s|}$, if $r, s>0$, (C) Jens Erfurt Andresen, M.Sc. Physics, Denmark $\quad-242-\quad$ Research on the a priori of Physics - \quad December 2022

6.2.5.7. Commutator Product of Multivectors in Geometric Algebra

The commutator product of two multivectors A and B we in geometric algebra define as $A \times B=\frac{1}{2}(A B-B A)$
For further details for higher grades please consult the literature, e.g., [10], [13], [18]. Here we mention the Jacobi identity
$A \times(B \times C)+B \times(C \times A)+C \times(A \times B)=0$
Special for a bivector B and a general 1-vector a we as (6.42) have the commutation $B \times a=\frac{1}{2}(B a-a B)=B \cdot a=-a \cdot B=-\frac{1}{2}(a B-B a)=-a \times B$
When we later use this (6.55) commutating product in a quantum mechanical context we use the nomenclature

$$
[A \times B]=\frac{1}{2}(A B-B A) \quad \text { or } \quad 2[A \times B]=A B-B A
$$

for multivector commutator relations to keep the correspondence with the quantum mechanical commutator relation we first defined in chapter I. (2.50) $\quad[b, d]=b d-d b$

It is worth noting the difference by the factor of one-half and thinking, what impact does this have on physics?

For quotation reference use: ISBN-13: 978-8797246931

