	restricted to other peruse for research, reviews, or senotarry a	July	5159	U 111
II The	Geometry of Physics – 6. The Natural Space of Physics – 6.2. The Geometric Algebra of Natural Space –	Ge	Re	- 6.2
		иC	S	
(6.45)	$\mathbf{a}\mathbf{B} = \mathbf{a}(\mathbf{b}\wedge\mathbf{c})$ or $\mathbf{B}\mathbf{a} = (\mathbf{b}\wedge\mathbf{c})\mathbf{a}$	lei	Ο	6.2.5
	These by (6.40), (6.43) and (6.38) consist of a 1-vector part $\langle \mathbf{aB} \rangle_1$ plus a trivector part $\langle \mathbf{aB} \rangle_3$.	ri	2	(6.55)
6.2.5.4	. The Simple Product of Three 1-vectors Further by the associative law (5.38), we define a 3-multivector product of three 1-vectors	$c \qquad C \qquad $	rch	(0.55)
(6.46)	abc = a(bc) = (ab)c	it		(6.56)
	From the origin 2-vector product (5.59) of two 1-vectors $\mathbf{ab} = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \wedge \mathbf{b}$, we get	iqi	\mathbf{O}	(0.00)
(6.47)	$\mathbf{a}(\mathbf{b}\cdot\mathbf{c}+\mathbf{b}\wedge\mathbf{c}) = (\mathbf{a}\cdot\mathbf{b}+\mathbf{a}\wedge\mathbf{b})\mathbf{c} = \mathbf{a}\mathbf{b}\mathbf{c}$	лe		(6.57)
	and by applying (6.40) with the distributive rules (5.39) and (5.40) we have	0	1	
(6.48)	$\underbrace{\mathbf{a}(\mathbf{b}\cdot\mathbf{c}) + \mathbf{a}\cdot(\mathbf{b}\wedge\mathbf{c})}_{\langle \mathbf{a}\mathbf{b}\mathbf{c}\rangle_1} + \underbrace{\mathbf{a}\wedge(\mathbf{b}\wedge\mathbf{c})}_{\langle \mathbf{a}\mathbf{b}\mathbf{c}\rangle_3} = \underbrace{(\mathbf{a}\cdot\mathbf{b})\mathbf{c} + (\mathbf{a}\wedge\mathbf{b})\cdot\mathbf{c}}_{pqg\cdot1} + \underbrace{(\mathbf{a}\wedge\mathbf{b})\wedge\mathbf{c}}_{pqg\cdot3} = \underbrace{\mathbf{abc}}_{qualities of directions.} \in \mathcal{G}_3^-(\mathbb{R}).$	f Pu	le	(6.58)
	For this simple product abc , the scalar $\langle \mathbf{abc} \rangle_0 = 0$ and the bivector $\langle \mathbf{abc} \rangle_2 = 0$ part vanish. At orthogonality $\langle \mathbf{abc} \rangle_1 = 0$, then we just have $\mathbf{abc} = \langle \mathbf{abc} \rangle_3 = \pm \mathbf{abc} \mathbf{i}$ with chiral <i>direction</i> .	$re \bar{h}$	a p	
6.2.5.5	. Even and Odd Multivector in general	la	r	
	For the \mathfrak{P} plane concept, we from (5.162) have resolved a general 2-multivector as	the	10	
(6.49)	$A = \langle A \rangle_0 + \langle A \rangle_1 + \langle A \rangle_2 \in \mathcal{G}_2(\mathbb{R}).$	m	r	
	For the 3-space concept, we resolve a general 3-multivector as	at		
(6.50)	$A = \langle A \rangle_0 + \langle A \rangle_1 + \langle A \rangle_2 + \langle A \rangle_3 \in \mathcal{G}_3(\mathbb{R}).$	ic	E	
	A generalised a <i>n</i> -multivector in $\mathcal{G}_n(\mathbb{R})$ we resolve in <i>grades</i> r and write it as	al		
(6.51)	$A = \sum_{r=1}^{n} \langle A \rangle_{r} = \langle A \rangle_{0} + \langle A \rangle_{1} + \langle A \rangle_{2} + \langle A \rangle_{3} + \dots + \langle A \rangle_{n} \in \mathcal{G}_{n}(\mathbb{R}).$	Re		
	A multivector that is simply <i>graded</i> as $A = \langle A \rangle_r = A_{\bar{r}}$ is called homogeneous of <i>grade</i> r and often named a r -blade or just a simple r -vector with a <i>primary quality of</i> r <i>'th grade</i> . A r -blade or a simple r -vector representing a <i>pqg-r direction</i> . E.g., simply: trivector as 3-blade, bivector as a 2-blade, 1-vector as a 1-blade, and scalar as 0-blade Later we will introduce a 4-vector as a 4-blade, etc. The multivector A is called	easoning	nysics	
	 odd when ⟨A⟩_r = 0 for all even r, ⟨A⟩₋ = ⟨A⟩₁ + ⟨A⟩₃ + ··· or even when ⟨A⟩_r = 0 for all odd r, ⟨A⟩₊ = ⟨A⟩₀ + ⟨A⟩₂ + ··· In general, all multivectors can be separated 			
(6.52)	$A = \langle A \rangle_+ + \langle A \rangle$	μ	Jt	
	Now we see that (5.59) $\mathbf{ab} = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \wedge \mathbf{b}$ is even, $\mathbf{ab} = \langle \mathbf{ab} \rangle_+ = \langle \mathbf{ab} \rangle_0 + \langle \mathbf{ab} \rangle_2$, and that (6.46)-(6.48) is odd, $\mathbf{abc} = \langle \mathbf{abc} \rangle$, as well as the 1-vector $\mathbf{a} = \langle \mathbf{a} \rangle$ is odd.	ditio	ens	
6.2.5.6	. Product of Two Bivectors	nc		
	We look at two bivectors B and $\mathbf{A} = \mathbf{a}_2 \wedge \mathbf{a}_1 = \mathbf{a}_2 \mathbf{a}_1$ (where $\mathbf{a}_2 \cdot \mathbf{a}_1 = 0$). We form the product	N		
(52)	$\mathbf{AB} = \mathbf{a}_2 \mathbf{a}_1 \mathbf{B} = \mathbf{a}_2 (\mathbf{a}_1 \cdot \mathbf{B} + \mathbf{a}_1 \wedge \mathbf{B}) = \mathbf{a}_2 \cdot (\mathbf{a}_1 \cdot \mathbf{B}) + \mathbf{a}_2 \wedge (\mathbf{a}_1 \cdot \mathbf{B}) + \mathbf{a}_2 \cdot (\mathbf{a}_1 \wedge \mathbf{B}) + \mathbf{a}_2 \wedge \mathbf{a}_1 \wedge \mathbf{B}$	•	f.	
(0.53)	$= \mathbf{A} \cdot \mathbf{B} + \frac{1}{2} (\mathbf{a}_2 \mathbf{a}_1 \mathbf{B} - \mathbf{B} \mathbf{a}_2 \mathbf{a}_1) + \mathbf{A} \wedge \mathbf{B} = \mathbf{A} \cdot \mathbf{B} + \frac{1}{2} (\mathbf{A} \mathbf{B} - \mathbf{B} \mathbf{A}) + \mathbf{A} \wedge \mathbf{B} = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \times \mathbf{B} + \mathbf{A} \wedge \mathbf{B}.$	\bigcirc	IL	
	Where we have used (6.42) and introduced the commutator product	2	÷,	
(6.54)	$\mathbf{A} \times \mathbf{B} = \frac{1}{2} (\mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{A}).$	$\frac{02}{2}$		
	This deduction works for any simple <i>grade r</i> -blade $B = \langle B \rangle_r = B_{\bar{r}}$, special $\mathbf{B} = \langle \mathbf{B} \rangle_2$, [13]p.10,(1.37). The inner product of bivectors is a scalar $\mathbf{A} \cdot \mathbf{B} = \langle \mathbf{AB} \rangle_0 \in \mathbb{R}$, just like two equal grade- <i>r</i> -blades. ²⁹⁶ In a pure 3-space due to (6.35) the outer product of two bivectors vanish $\mathbf{A} \wedge \mathbf{B} = 0$.	0-22	ndres	
This is tal	ken from [13]p.6,(1.21) for the general definition of the inner product of blades $A_{\bar{r}} \cdot B_{\bar{s}} \equiv \langle A_{\bar{r}} B_{\bar{s}} \rangle_{ r-s }$, if $r, s > 0$.		en	

Copyrighted material from hardback: ISBN-13: 978-8797246931, paperback: ISBN-13: 978-8797246948, Kindle and PDF-file: ISBN-13: 978-8797246917

have on physics? © Jens Erfurt Andresen, M.Sc. NBI-UCPH,

 $A \times B = \frac{1}{2}(AB - BA)$

we use the nomenclature

Here we mention the Jacobi identity

 $A \times (B \times C) + B \times (C \times A) + C \times (A \times B) = 0$

For quotation reference use: ISBN-13: 978-8797246931

-242 -

Research on the a priori of Physics

December 2022

© Jens Erfurt Andresen, M.Sc. Physics, Denmark

-243

For quotation reference use: ISBN-13: 978-879724693

- 6.2.5. The Geometric Algebra for Euclidean 3-space - 6.2.5.7 Commutator Product of Multivectors in Geometric Algebra

6.2.5.7. Commutator Product of Multivectors in Geometric Algebra

The commutator product of two multivectors A and B we in geometric algebra define as

For further details for higher grades please consult the literature, e.g., [10], [13], [18].

Special for a bivector B and a general 1-vector a we as (6.42) have the commutation $B \times a = \frac{1}{2}(Ba - aB) = B \cdot a = -a \cdot B = -\frac{1}{2}(aB - Ba) = -a \times B$ When we later use this (6.55) commutating product in a quantum mechanical context

$[A \times B] = \frac{1}{2}(AB - BA)$ or $2[A \times B] = AB - BA$

for multivector commutator relations to keep the correspondence with the quantum mechanical commutator relation we first defined in chapter I. (2.50) [b,d] = b d - d b.

It is worth noting the difference by the factor of one-half and thinking, what impact does this

Volume I, – Edition 2 – 2020-22, Revision 6