
w . When the fourth defining point D in a solid in space is moved to the plane γ_{ABC}, it collapses to that plane (see 5.1.1.2,o) and the circumscribed sphere collapse to a circle (compare with chapter 5.3 Figure 5.31 and Figure 5.34).
6.1.2.1. The concept of Spatial Angular Structure

The idea of an angular circle rotation subject is representing a plane and gives raise to rotational symmetry in this plane, which we represent with a normal 1-vector for the rotation axis perpendicular to this circle plane. This symmetry plane direction primary quality of grade 2 (pqg-2) we call the transversal plane to the axial normal direction pqg-1.
In Figure 6.1,t we see two objects of these planes with an inclination. The angle between these inclining planes is defined as the angle between their normal 1 -vectors $\Varangle\left(\mathbf{n}_{2}, \mathbf{n}_{1}\right)$
The intersection between these two inclining transversal planes
form a line $\ell_{\mathrm{AC}} \perp\left(\mathrm{n}_{2} \wedge \mathrm{n}_{1}\right)$ perpendicular to their normal
1 -vector axes that form a third transversal plane $\gamma_{n_{2} \wedge n_{1}}$, that a priori is perpendicular to two original planes
$\gamma_{\perp \mathbf{n}_{2}}$ and $\gamma_{\perp \mathbf{n}_{1}}$. The causal third normal 1-vector σ_{3} to $\gamma_{\perp \sigma_{3}}=\gamma_{\mathbf{n}_{2} \wedge \mathbf{n}_{1}}$ is parallel to the intersection line $\sigma_{3} \| \ell_{\mathrm{AC}}$. In this way the idea of an axial structure in space along σ as the intersection line between the two inclining planes is the angular generator for a cylindrical rotation around this intersection axis. This axial rotation symmetry is essential for the transversal plane waves of light.

6.1.3. The Euclidean 1-vector Space for Natural Space.

In the tradition since Descartes the space extensions of solid is which has length, breadth, and depth. (E XI.De.1.), that led to the Cartesian 1 -vector space $\left(V_{3}, \mathbb{R}\right)$ with a
Euclidean metric (5.51) is defined by an orthonormal basis set, e.g., $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$.
An arbitrary 1-vector in this space can then be formed by

$$
\mathbf{x}=x_{1} \sigma_{1}+x_{2} \sigma_{2}+x_{3} \sigma_{3} \in\left(V_{3}, \mathbb{R}\right) \sim \mathbb{R}_{1}^{1} \oplus \mathbb{R}_{2}^{1} \oplus \mathbb{R}_{3}^{1}=\mathbb{R}_{1,2,3}^{3} \quad\left(\text { or }=\mathbb{R}_{\mathrm{xyz}}^{3}\right)
$$

A local point X position in space pointed out from an origo O by giving coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ in the three directions of the 1 -vectors in a basis set $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$

6.1.3.2. Covariant Cartesian Coordinates

in Figure 6.3
Given the orthonormal basis set of 1-vectors $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$. Each covariant coordinate is defined as the normal distance to the transversal planes through O from X , defined by

$$
\sigma_{3} \sigma_{2}=\sigma_{3} \wedge \sigma_{2}, \quad \sigma_{1} \sigma_{3}=\sigma_{1} \wedge \sigma_{3}, \text { and } \sigma_{2} \sigma_{1}=\sigma_{2} \wedge \sigma_{1}
$$

613.3. Contravariant Coordinates

When the basis is not Cartesian there are oblique angles between the normal transversal planes to the 1-vector axis $x^{1} \mathbf{n}_{1}, x^{2} \mathbf{n}_{2}, x^{3} \mathbf{n}_{3}$. Then the contravariant coordinates x^{k} are defined as the coordinate axis intersected by the parallel planes (hypersurfaces) formed by the two other axes respectively
$\left(\mathrm{n}_{3} \wedge \mathrm{n}_{2}\right)<\mathrm{n}_{1}, \quad\left(\mathrm{n}_{1} \wedge \mathrm{n}_{3}\right)<\mathrm{n}_{2} \quad$ and $\quad\left(\mathrm{n}_{2} \wedge \mathrm{n}_{1}\right) \angle \mathrm{n}_{3}$ Then the addition form works, but not the Pythagorean.

Figure 6.2 Axial cylinder symmetric rotation of a transversal plane field $\gamma_{\mathbf{n}_{2} \wedge n_{1}}$
6.1.3.4. The Classical Cartesian Coordinate System for Position Points in 3-Space

The tradition says that we are pointing out three directions in natural physic 3 -space by giving an orthonormal basis set of 1 -vectors $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$. The main problem here is that the coordinate axis for these directions do not necessarily intersects due to their translation invariance of the 1 -vector idea. This demands us to choose an arbitrary origo O for the position coordinate system, ${ }^{287}$ we name this cartesian system for $\left\{0, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$.
When we have a central origo O in our world of the locality of what we call 3 -space and we point out three perpendicular object directions $\sigma_{1}, \sigma_{2}, \sigma_{3}$, then we can point out a position

$$
\overrightarrow{\mathrm{OX}}=\mathrm{x}=x_{1} \sigma_{1}+x_{2} \sigma_{2}+x_{3} \sigma_{3} .
$$

A point X in 3-space relative to origo O , demanded by the orthogonal 1-vector directions $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and given by the real scalar coordinates that meet

$x_{1}=\sigma_{1} \cdot \mathbf{x}, \quad x_{2}=\sigma_{2} \cdot \mathbf{x}, \quad x_{3}=\sigma_{3} \cdot \mathbf{x}$

We see that the three orthogonal pqg-1-vector directions for any physical 3 -space entity not automatic point out an origo, we must do it ourselves in this simple Cartesian view Instead, when we consider three non-parallel planes, we automatically get an intersecting origo.
First two inclining planes (E XI.De.6.), 6.1.2,t and 6.1.2.1 will intersect in a straight line. This line will intersect the third plane in just one point, that automatic will be an origo for these three inclining planes.
Do we have a physical entity, which can be characterised by three independent plane pqg-2 direction qualities there will always be one intersection point, which will form a locality center as an origo point for that entity. For the idea of three perpendicular planes, we can let their normal 1-vectors be the orthonormal basis $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$. The intersections of these three planes will then implicit be the origo as a center of locality for these planes as shown Figure 6.4. ${ }^{288}$ The translation of each plane will result in the translation of the locality center origo for the belonging entity through 3 -space in that same direction.

Figure 6.4 Three perpendicular planes intersect at just one point O . These planes are represented by their three orthogonal rir directions The asis $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ for objects 1 -vectors do not intersect.
This figure has reference to Figure 6.3.

6.1.4. A Curiosum, the Concept of a Tetraon in a Tetrahedron

Four points A, B, C, D are defining a solid span in space § 6.1.2, Figure 6.1,v. Classically the Platonic tetrahedron is the ideal subject for the simplest solid object. We will concentrate on the center of the locus situs and choose the circumscribed center O We form the 1 -vectors from center to the four points $u_{a}=\overrightarrow{\mathrm{OA}}, u_{b}=\overrightarrow{\mathrm{OB}}, u_{c}=\overrightarrow{\mathrm{OC}}$, and $u_{d}=\overrightarrow{\mathrm{OD}}$, where due to the circumscribed circle $\left|u_{a}\right|=\left|u_{b}\right|=\left|u_{c}\right|=\left|u_{d}\right|$.
In stereo 3 -space the fourth 1 -vector is a linear combination of the three others, e.g.

$$
\mathbf{u}_{d}=\lambda^{\mathrm{a}} \mathbf{u}_{\mathrm{a}}+\lambda^{\mathrm{b}} \mathbf{u}_{\mathrm{b}}+\lambda^{\mathrm{c}} \mathbf{u}_{\mathrm{c}} \text {, where } \lambda^{\mathrm{a}}, \lambda^{\mathrm{b}}, \lambda^{\mathrm{c}} \in \mathbb{R}
$$

As a performance in The 1 -vector space $\left(V_{3}, \mathbb{R}\right)$ for 3 is 3-dimensional $\operatorname{dim}\left(V_{3}\right)=3$.

[^0]C Jens Erfurt Andresen, M.Sc. Physics, Denmark Research on the a priori of Physics December 2022
For quotation reference use: ISBN-13: 978-8797246931

For quotation reference use: ISBN-13: 978-8797246931

[^0]: ${ }^{287}$ It is mandatory to say: There exists no 'GOD' for the 1 -vector idea that makes these three intersect in one and the same point that we call an origo for any locality in 3 space. It is us that by an ingenious work construct an idea of an origo center for location, from which we can span the coordinate-axis from what we call an object 1 -vector basis $\left\{0, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$.
 ${ }^{8}$ We do not have to play 'GOD' for the 1 -vector basis and make an external choice of origo. The idea of their transversal planes forms an automatic intersection that performs a center of locality for our idea of a physical entity that possesses plane qualities. An everyday example is: Two walls in a room meeting the floor making a corner vertex, that is an origo in practice.
 © Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-235-\quad$ Volume I, - Edition 2-2020-22, - Revision 6,

