- II. . The Geometry of Physics - 5. The Geometric Plane Concept - 5.8. The Exponential Function of Arbitrary Multivectors -

5.8. The Exponential Function of Arbitrary Multivectors

The generalised multivector A can be dissolved in its finite grade components $\langle A \rangle_r$

(5.387)
$$A = \sum_{r=0}^{n} \langle A \rangle_r = \langle A \rangle_0 + \langle A \rangle_1 + \langle A \rangle_2 + \dots + \langle A \rangle_n \quad \in \mathcal{G}_n = \mathcal{G}_n(\mathbb{R}).$$

Note that each $\langle A \rangle_r$ of *grade-r* for $2 < r \leq n$ is an external extension to the plane concept. We now define a generalisation of the exponential function for multivectors by a power series

(5.388)
$$\exp(A) = e^{A} = \sum_{k=0}^{\infty} \frac{A^{k}}{k!} = 1 + \frac{A}{1!} + \frac{A^{2}}{2!} + \frac{A^{3}}{3!} + \dots + \frac{A^{k}}{k!} + \frac{A^{k}}{3!} + \dots + \frac{A^{k}}{k!}$$

This is an algebraic definition of the exponential function and if the multivector $A \in \mathcal{G}_n$ stays in the algebra \mathcal{G}_n the result $Z = e^A \in \mathcal{G}_n$ stays inside the same algebra. The reason is that for all grades higher than n disappears $\langle A \rangle_{>n} = 0$, and the full geometric algebra \mathcal{G}_n is closed. The same closed consistency for the even algebras \mathcal{G}_n^+ , with $A^+ = \langle A \rangle_0 + \langle A \rangle_2 + \cdots$.

For two different multivectors $A, B \in \mathcal{G}_n$ or \mathcal{G}_n^+ , we formulate the *restrictive* additive rule for the exponentials

(5.389)
$$e^A e^B = e^{(A+B)} = e^{(B+A)} = e^B e^A$$

The *restriction* is that products commute AB = BA, just as addition always does A+B = B+A. This is seen by the binomial series for the added multivectors with the integer exponents

5.390)
$$(B+A)^n = \sum_{k=0}^n \frac{n!}{(n-k)!k!} A^{n-k} B^k$$
, with the demand $AB = BA$, as [10]p.73 resulting in

$$(5.391) \qquad e^{A}e^{B} = \sum_{m=0}^{\infty} \frac{A^{m}}{m!} \cdot \sum_{n=0}^{\infty} \frac{B^{n}}{n!} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{A^{n-k}}{(n-k)!} \frac{B^{k}}{k!} = \sum_{n=0}^{\infty} \frac{(A+B)^{n}}{n!} = e^{(A+B)} = e^{(B+A)}$$

For the non-commutating multivectors $AB \neq BA$, we will always be able to write

 $e^A e^B = e^C$, (5.392)

> but then we have $C \neq A+B$, and we do not have a general solution. Later in this book we will study the case with *anticommuting* AB = -BA bivector exponentials for rotations in an even algebra $\mathcal{G}_3^+ \sim \mathcal{G}_{0,2}$ containing several independent plane *directions*.

5.8.1.1. The Hyperbolic Functions of Multivectors

We separate the exponent power series (5.388) in even and odd powers by the definitions

(5.393)
$$\cosh A \coloneqq \frac{e^A + e^{-A}}{2} = \sum_{k=0}^{\infty} \frac{A^{2k}}{(2k)!} = 1 + \frac{A^2}{2!} + \frac{A^4}{4!} + \frac{A^6}{6!} + \frac{A^6}{4!}$$

(5.394)
$$\sinh A \coloneqq \frac{e^A - e^{-A}}{2} = \sum_{k=0}^{\infty} \frac{A^{2k+1}}{(2k+1)!} = A + \frac{A^3}{3!} + \frac{A^5}{5!} + \frac{A^7}{7!} + \frac{A^7}{5!} + \frac{A^7}{7!} + \frac{A^7}{5!} + \frac{A^7}{$$

The sum of the even and the odd hyperbolic part is the exponential series (5.388)

 $e^A = \cosh A + \sinh A.$ (5.395)

The input multivector A is the argument in the functions $e^A = \exp(A)$, $\cosh(A)$ and $\sinh(A)$

5.8.1.2. The cosine and sine Functions of Arbitrary G_n Multivectors

Introducing the generalised multivector unit pseudoscalar I with the founding property $I^2 = -1$. Take it and (left) operate by multiplying it to a multivector A we get a new multivector B = IA. We will use this to transform (5.393)-(5.394) to the general cosine and sine multivector functions

(5.396)
$$\cos A = \cosh IA = 1 + \frac{(IA)^2}{2!} + \frac{(IA)^4}{4!} + \frac{(IA)^6}{6!} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k A^{2k}}{(2k)!} = 1 - \frac{A^2}{2!} + \frac{A^4}{4!} - \frac{A^6}{6!} + \dots$$

(5.397)
$$\sin A = \frac{1}{I} \sinh IA = A + \frac{(IA)^3}{3! I} + \frac{(IA)^5}{5! I} + \frac{(IA)^7}{7! I} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k A^{2k+1}}{(2k+1)!} = 1 - \frac{A^3}{3!} + \frac{A^5}{5!} - \frac{A^7}{7!} + \dots$$

We compare with the traditional definition formulas, that also is valid for multivectors

1				
© Jens Erfurt Andresen, M.Sc. Physics,	Denmark	- 226 -	Research on the a priori of Physics –	December 2
	0			

For quotation reference use: ISBN-13: 978-8797246931

 $\mathbf{\nabla}$ Geometric **CS** earc Critique 5 on th of Pure 6 ρ Mathematical Reasoning priori (5.401)Of **Physics** (5. (5.40)Edition (5. ens N rfurt \bigcirc N 020-Andres N Õ © Jens Erfurt Andresen, M.Sc. NBI-UCPH,

- 5.8.2. Exponential and Hyperbolic Functions in the Plane Concept - 5.8.2.3 The Lorentz 1-Spinor in the Line Direction

(5.398)
$$\cos A = \frac{e^{IA} + e^{-IA}}{2}$$
 and $\sin A = \frac{e^{IA} + e^{-IA}}{2I}$

and back to the exponential function with the multivector argument B = IA

(5.399)
$$e^{IA} = \cos A + I \sin A$$
.

Here it is essential to distinguish the different pseudoscalar units $I = \langle I \rangle_n$ all with the same *quality* $I^2 = -1$ of the different *direction primary quality* for each *maximal grade* n for the geometric algebras \mathcal{G}_n of physics. For the Euclidian plane *direction* unit **i** we have $\mathbf{i}^2 = -1$. More about these pseudoscalars for higher maximal grades later below chapters 6, 7, etc...

5.8.2. Exponential and Hyperbolic Functions in the Plane Concept

In the plane concept, the multivector A can be dissolved in its grade components $\langle A \rangle_r$

5.400)
$$A = \sum_{r=0}^{2} \langle A \rangle_r = \langle A \rangle_0 + \langle A \rangle_1 + \langle A \rangle_2 \quad \in \mathcal{G}_2$$

$$E = o + pt = o + B, \quad \text{where } B^{-} = -$$

where the Euclidean bivector **B** is in the plane *direct*

5.402)
$$\mathcal{Z} = e^{E} = e^{\delta + \beta i} = e^{\delta} e^{\beta i} = \rho e^{\beta i} \in \mathcal{G}_{2}^{+},$$

(5.403)
$$Z = e^E = 1 + \frac{E}{1!} + \frac{E^2}{2!} + \dots + \frac{E^k}{k!} + \dots$$

And the 1-spinor form as in section 5.2.9 (5.106) we have the ρ dilated Euler 1-rotor $U_{\beta} = \rho e^{i\beta}$

(4.404)
$$\mathbf{r}\mathbf{u}_1 = \mathbf{r}\cdot\mathbf{u}_1 + \mathbf{r}\wedge\mathbf{u}_1 = \mathcal{Z} = \rho e^{i\beta} = \rho \cos\beta$$

where the last expression is the cartesian component coordinates to the multivector (5.138) using the polar coordinates (ρ, β) as input arguments, again the *direction* of this plane is $\mathbf{i} \coloneqq \sigma_2 \sigma_1$.

5.8.2.3. The Lorentz 1-Spinor in the Line Direction Paravector Space

Second, we look at the simple mixed paravector alger

$$n = \alpha + p$$
 where $p^2 = z^2$

(05)
$$p = \alpha \mathbf{1} + \zeta \mathbf{u} = \alpha + \mathbf{p}$$
, where $\mathbf{p}^2 = \zeta^2$
In that $\alpha \in \mathbb{R}$, commute with \mathbf{u} as $\alpha \mathbf{u} = \mathbf{u} \alpha$, we have

(406)
$$p_{\Lambda} = e^{p} = e^{\alpha + \zeta \mathbf{u}} = e^{\alpha} e^{\zeta \mathbf{u}} = \rho_{\Lambda} e^{\zeta \mathbf{u}}.$$

(5.407)
$$\rho_{\Lambda} = e^{\alpha} = \cosh \alpha + \sinh \alpha \in \mathbb{R}.$$

The second factor is a Lorentz rotor paravector of the grade form $\langle A \rangle_0 + \langle A \rangle_1$

(5.408)
$$U_{\zeta,\mathbf{u}}^2 = e^{\zeta \mathbf{u}} = \cosh(\zeta \mathbf{u}) + \sinh(\zeta \mathbf{u}) = \cosh \zeta$$

The reason for this is that
$$u^2 = 1$$
, first the even expansion

(5.409)
$$\cosh(\zeta \mathbf{u}) = 1 + \frac{(\zeta \mathbf{u})^2}{2!} + \frac{(\zeta \mathbf{u})^4}{4!} + \dots = 1 + \frac{\zeta^2}{2!} + \frac{\zeta^4}{4!}$$

Then the odd expansion separates the 1-vector direction

(5.410)
$$\sinh(\zeta \mathbf{u}) = \zeta \mathbf{u} + \frac{(\zeta \mathbf{u})^3}{3!} + \frac{(\zeta \mathbf{u})^5}{5!} + \dots = \mathbf{u} \left(\zeta + \frac{\zeta^3 \mathbf{u}^3}{3!}\right)$$

We find that
$$(5.406)$$
 is a paravector as (5.242) contained at (5.406) where (5.242) contained at (5.242)

5.411)
$$p_{\Lambda} = e^{\alpha + \zeta \mathbf{u}} = \rho_{\Lambda} U_{\zeta,\mathbf{u}} = -\rho_{\Lambda} \cosh \zeta + \mathbf{u} (\rho_{\Lambda} \sinh \zeta)$$

The exponential function $\exp(\alpha)$ of a paravector is

- $=\mathcal{G}_{2}(\mathbb{R}).$ (5.161)-(5.162).
- as $E = \langle E \rangle_0 + \langle E \rangle_2 \in \mathcal{G}_2^+$ $-\beta^2$, and $i^2 = -1$, *tion* of $\mathbf{i} \coloneqq \mathbf{\sigma}_2 \mathbf{\sigma}_1$, as the bivector span, $\mathbf{B} = \beta \mathbf{i}$. The scalar $\delta \in \mathbb{R}$, multiplicative commute with **B**, $\mathbf{B}\delta = \delta \mathbf{B}$, therefore by (5.389) exp(*E*) with $\rho = e^{\delta} \in \mathbb{R}$, $\beta \in \mathbb{R}$, and $\delta = \ln(\rho) \in \mathbb{R}$. multivector *E* of max *grade* n=2 is
 - $+ i\rho \sin \beta$.
- Second, we look at the simple mixed paravector algebra, as $p = \langle p \rangle_0 + \langle p \rangle_1$ written as (5.240)
 - 2 , and $\mathbf{u}^2 \coloneqq 1$.
 - $\alpha \in \mathbb{R}$, commute with **u** as $\alpha \mathbf{u} = \mathbf{u}\alpha$, we have the commuting product factors of $\exp(p)$

scalar without *direction*

(as (5.358)) +**u** sinh ζ .

ansion cancel the 1-vector direction

 $+\cdots = \cosh \zeta \in \mathbb{R}.$

- 227

 $\frac{\mathbf{u}^2}{\mathbf{u}} + \frac{\zeta^5 \mathbf{u}^4}{5!} + \cdots = \mathbf{u} \operatorname{sinh} \zeta.$

ining a scalar part plus a 1-vector part $h\zeta$).

The exponential function $\exp(p)$ of a paravector is a paravector p_{Λ} with preserved line *direction*.