

5.8. The Exponential Function of Arbitrary Multivectors

The generalised multivector A can be dissolved in its finite grade components $\langle A\rangle_{r}$
(5.387) $\quad A=\sum_{r=0}^{n}\langle A\rangle_{r}=\langle A\rangle_{0}+\langle A\rangle_{1}+\langle A\rangle_{2}+\cdots+\langle A\rangle_{n} \quad \in \mathcal{G}_{n}=\mathcal{G}_{n}(\mathbb{R})$.

Note that each $\langle A\rangle_{r}$ of $\boldsymbol{g r a d e}-r$ for $2<r \leq n$ is an external extension to the plane concept
We now define a generalisation of the exponential function for multivectors by a power series
(5.388) $\exp (A)=e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}=1+\frac{A}{1!}+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots+\frac{A^{k}}{k!}+\cdots$

This is an algebraic definition of the exponential function and if the multivector $A \in \mathcal{G}_{n}$ stays in the algebra \mathcal{G}_{n} the result $Z=e^{A} \in \mathcal{G}_{n}$ stays inside the same algebra. The reason is that for all grades higher than n disappears $\langle A\rangle_{>n}=0$, and the full geometric algebra \mathcal{G}_{n} is closed.
The same closed consistency for the even algebras \mathcal{G}_{n}^{+}, with $A^{+}=\langle A\rangle_{0}+\langle A\rangle_{2}+\cdots$.
For two different multivectors $A, B \in \mathcal{G}_{n}$ or \mathcal{G}_{n}^{+}, we formulate the restrictive additive rule for the exponentials
$e^{A} e^{B}=e^{(A+B)}=e^{(B+A)}=e^{B} e^{A}$
The restriction is that products commute $A B=B A$, just as addition always does $A+B=B+A$
This is seen by the binomial series for the added multivectors with the integer exponents
(5.390) $\quad(B+A)^{n}=\sum_{k=0}^{n} \frac{n!}{(n-k)!k!} A^{n-k} B^{k}, \quad$ with the demand $A B=B A$, as $[10] p .73$ resulting in
(5.391) $\quad e^{A} e^{B}=\sum_{m=0}^{\infty} \frac{A^{m}}{m!} \cdot \sum_{n=0}^{\infty} \frac{B^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{A^{n-k}}{(n-k)!} \frac{B^{k}}{k!}=\sum_{n=0}^{\infty} \frac{(A+B)^{n}}{n!}=e^{(A+B)}=e^{(B+A)}$.

For the non-commutating multivectors $A B \neq B A$, we will always be able to write
(5.392) $e^{A} e^{B}=e^{C}$,
but then we have $C \neq A+B$, and we do not have a general solution. Later in this book we will study the case with anticommuting $A B=-B A$ bivector exponentials for rotations in an even algebra $\mathcal{G}_{3}^{+} \sim \mathcal{G}_{0,2}$ containing several independent plane directions.

5.8.1.1. The Hyperbolic Functions of Multivectors

We separate the exponent power series (5.388) in even and odd powers by the definitions
(5.393) $\quad \cosh A:=\frac{e^{A}+e^{-A}}{2}=\sum_{k=0}^{\infty} \frac{A^{2 k}}{(2 k)!}=1+\frac{A^{2}}{2!}+\frac{A^{4}}{4!}+\frac{A^{6}}{6!}+\cdots$
(5.394) $\quad \sinh A:=\frac{e^{A}-e^{-A}}{2}=\sum_{k=0}^{\infty} \frac{A^{2 k+1}}{(2 k+1)!}=A+\frac{A^{3}}{3!}+\frac{A^{5}}{5!}+\frac{A^{7}}{7!}+\cdots$

The sum of the even and the odd hyperbolic part is the exponential series (5.388)
(5.395) $\quad e^{A}=\cosh A+\sinh A$.

The input multivector A is the argument in the functions $e^{A}=\exp (A), \cosh (A)$ and $\sinh (A)$
5.8.1.2. The cosine and sine Functions of Arbitrary $\mathcal{G}_{\boldsymbol{n}}$ Multivectors

Introducing the generalised multivector unit pseudoscalar I with the founding property $I^{2}=-1$ Take it and (left) operate by multiplying it to a multivector A we get a new multivector $B=I A$. We will use this to transform (5.393)-(5.394) to the general cosine and sine multivector functions
$\cos A=\cosh I A=1+\frac{(I A)^{2}}{2!}+\frac{(I A)^{4}}{4!}+\frac{(I A)^{6}}{6!}+\cdots=\sum_{k=0}^{\infty} \frac{(-1)^{k} A^{2 k}}{(2 k)!}=1-\frac{A^{2}}{2!}+\frac{A^{4}}{4!}-\frac{A^{6}}{6!}+$
(5.397)

$$
\sin A=\frac{1}{I} \sinh I A=A+\frac{(I A)^{3}}{3!I}+\frac{(I A)^{5}}{5!I}+\frac{(I A)^{7}}{7!I}+\cdots=\sum_{k=0}^{\infty} \frac{(-1)^{k} A^{2 k+1}}{(2 k+1)!}=1-\frac{A^{3}}{3!}+\frac{A^{5}}{5!}-\frac{A^{7}}{7!}+\cdots
$$

We compare with the traditional definition formulas, that also is valid for multivectors

For quotation reference use: ISBN-13: 978-8797246931
(5.398) $\cos A=\frac{e^{I A}+e^{-I A}}{2}$ and $\sin A=\frac{e^{I A}+e^{-I A}}{2 I}$,
and back to the exponential function with the multivector argument $B=I A$

$$
e^{I A}=\cos A+I \sin A
$$

Here it is essential to distinguish the different pseudoscalar units $I=\langle I\rangle_{n}$ all with the same quality $I^{2}=-1$ of the different direction primary quality for each maximal grade n for the geometric algebras \mathcal{G}_{n} of physics. For the Euclidian plane direction unit \boldsymbol{i} we have $\boldsymbol{i}^{2}=-1$
More about these pseudoscalars for higher maximal grades later below chapters 6, 7, etc.

5.8.2. Exponential and Hyperbolic Functions in the Plane Concept

In the plane concept, the multivector A can be dissolved in its grade components $\langle A\rangle_{r}$
(5.400) $\quad A=\sum_{r=0}^{2}\langle A\rangle_{r}=\langle A\rangle_{0}+\langle A\rangle_{1}+\langle A\rangle_{2} \quad \in \mathcal{G}_{2}=\mathcal{G}_{2}(\mathbb{R})$. (5.161)-(5.162).

5.8.2.2. The 1 -Spinor in the Euclidean Cartesian plane

First, we look at the even part of the plane algebra, as $E=\langle E\rangle_{0}+\langle E\rangle_{2} \quad \in \mathcal{G}_{2}^{+}$
(5.401) $\quad E=\delta+\beta i=\delta+\mathrm{B}, \quad$ where $\mathrm{B}^{2}=-\beta^{2}$, and $i^{2}=-1$,
where the Euclidean bivector B is in the plane direction of $i:=\sigma_{2} \sigma_{1}$, as the bivector span, $\mathrm{B}=\beta i$. The scalar $\delta \in \mathbb{R}$, multiplicative commute with $\mathbf{B}, \mathbf{B} \delta=\delta \mathbf{B}$, therefore by (5.389) $\exp (E)$
(5.402) $\quad Z=e^{E}=e^{\delta+\beta i}=e^{\delta} e^{\beta i}=\rho e^{\beta i} \in \mathcal{G}_{2}^{+}$, with $\rho=e^{\delta} \in \mathbb{R}, \beta \in \mathbb{R}$, and $\delta=\ln (\rho) \in \mathbb{R}$ Here in the plane, the power expansion in the even multivector E of max grade $n=2$ is
(5.403) $Z=e^{E}=1+\frac{E}{1!}+\frac{E^{2}}{2!}+\cdots+\frac{E^{k}}{k!}+\cdots$

And the 1 -spinor form as in section 5.2 .9 (5.106) we have the ρ dilated Euler 1-rotor $U_{\beta}=\rho e^{i \beta}$
(5.404) $\quad \mathrm{ru}_{1}=\mathrm{r} \cdot \mathrm{u}_{1}+\mathrm{r} \wedge \mathrm{u}_{1}=Z=\rho e^{i \beta}=\rho \cos \beta+i \rho \sin \beta$,
where the last expression is the cartesian component coordinates to the multivector (5.138) using the polar coordinates (ρ, β) as input arguments, again the direction of this plane is $i:=\sigma_{2} \sigma_{1}$.
5.8.2.3. The Lorentz 1-Spinor in the Line Direction Paravector Space

Second, we look at the simple mixed paravector algebra, as $p=\langle p\rangle_{0}+\langle p\rangle_{1}$ written as (5.240)
(5.405)
$\mathcal{p}=\alpha 1+\zeta \mathbf{u}=\alpha+\mathbf{p}, \quad$ where $\mathbf{p}^{2}=\zeta^{2}$, and $\mathbf{u}^{2}:=1$
In that $\alpha \in \mathbb{R}$, commute with \mathbf{u} as $\alpha \mathbf{u}=\mathbf{u} \alpha$, we have the commuting product factors of $\exp (\mathcal{P})$
(5.406) $\quad p_{\Lambda}=e^{\mathcal{p}}=e^{\alpha+\zeta u}=e^{\alpha} e^{\zeta u}=\rho_{\Lambda} e^{\zeta u}$.

The first factor in the last term is a dilation by a real scalar without direction
(5.407) $\rho_{\Lambda}=e^{\alpha}=\cosh \alpha+\sinh \alpha \quad \in \mathbb{R}$.

The second factor is a Lorentz rotor paravector of the grade form $\langle A\rangle_{0}+\langle A\rangle_{1} \quad$ (as (5.358))
(5.408) $\quad U_{\zeta, \mathbf{u}}^{2}=e^{\zeta \mathbf{u}}=\cosh (\zeta \mathbf{u})+\sinh (\zeta \mathbf{u})=\cosh \zeta+\mathbf{u} \sinh \zeta$.

The reason for this is that $\mathbf{u}^{2}=1$, first the even expansion cancel the 1 -vector direction
(5.409) $\cosh (\zeta \mathbf{u})=1+\frac{(\zeta \mathbf{u})^{2}}{2!}+\frac{(\zeta \mathbf{u})^{4}}{4!}+\cdots=1+\frac{\zeta^{2}}{2!}+\frac{\zeta^{4}}{4!}+\cdots=\cosh \zeta \quad \in \mathbb{R}$.

Then the odd expansion separates the 1 -vector direction
(5.410) $\sinh (\zeta \mathbf{u})=\zeta \mathbf{u}+\frac{(\zeta \mathbf{u})^{3}}{3!}+\frac{(\zeta \mathbf{u})^{5}}{5!}+\cdots=\mathbf{u}\left(\zeta+\frac{\zeta^{3} \mathbf{u}^{2}}{3!}+\frac{\zeta^{5} \mathbf{u}^{4}}{5!}+\cdots\right)=\mathbf{u} \sinh \zeta$.

We find that (5.406) is a paravector as (5.242) containing a scalar part plus a 1 -vector part
(5.411) $\quad p_{\Lambda}=e^{\alpha+\zeta \mathbf{u}}=\rho_{\Lambda} U_{\zeta, \mathbf{u}}=\rho_{\Lambda} \cosh \zeta+\mathbf{u}\left(\rho_{\Lambda} \sinh \zeta\right)$.

The exponential function $\exp (\mathscr{p})$ of a paravector is a paravector \mathscr{p}_{Λ} with preserved line direction.
C Jens Erfurt Andresen, M.Sc. NBI-UCPH
For quotation reference use: ISBN-13: 978-8797246931

