Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

5.7.4. Lorentz Rotation in the Minkowski \mathcal{B}-plane

In Figure 5.53 we display the hyperbola curves for invariant transformations by the scaling parameter λ of the nilpotent null directions (5.318) in a geometric Clifford algebra $\mathcal{G}_{1,1}(\mathbb{R})$ Using the idea from Kepler's second law, that the angular area of the curve is essential as a parameter for a transformation. The area unit element in Minkowski \mathcal{B}-plane is just the \mathcal{B}-bivector $\mathcal{B}:=\gamma_{1} \gamma_{0}$, where $\mathcal{B}^{2}:=1$. From this, we choose a real parameter $\zeta \in \mathbb{R}$ often called rapidity for the area argument $1 / 2 \zeta \mathcal{B}$ in a hyperbolic multivector exponential function we call a Lorentz 1-rotor ${ }^{280}$

$$
U_{\zeta}=e^{1 / 2 \zeta \mathcal{B}}=\exp (1 / 2 \zeta \mathcal{B})=\cosh (1 / 2 \zeta \mathcal{B})+\sinh (1 / 2 \zeta \mathcal{B})
$$

The essential argument in this 1-rotor has a positive Clifford signature (+): $\mathcal{B}^{2}=+|\mathcal{B}|:=1$ $(1 / 2 \zeta \mathcal{B})^{2}=1 / 4 \zeta^{2} \geq 0$
The multivector value of the exponential function (5.349) exists in the mixed algebra $\mathcal{G}_{1,1}(\mathbb{R})$ of the Minkowski \mathcal{B}-plane. The algebra for these functions is analysed in the next section 5.8 , but here we will use that cosh is even in its power series of $\mathcal{B}^{2}=1$, causing cosh to be an even scalar, and that sinh is odd so that factor \mathcal{B} can be separated from the scalar function, then (5.349) is

To investigate the possible impact of such a Lorentz rotor we will intuit a Euclidean space $\mathcal{G}_{2}(\mathbb{R})$ or $\mathcal{G}_{3}(\mathbb{R}) 1$-vector unit direction object $\mathrm{u}=u_{k} \sigma_{k}$ that has a measure $\gamma_{0}^{2}=1$ (5.348) mapping it to a subject 1 -vector in a full Minkowski space $\mathcal{G}_{1,2}(\mathbb{R})$ or $\mathcal{G}_{1,3}(\mathbb{R})$ substance. The mapping is performed by right multiplying by the development measure direction unit quantum γ_{0} : $\gamma_{\mathrm{u}}:=\mathrm{u} \gamma_{0}$, producing a unit Minkowski \mathcal{B}-plane subject $\mathcal{B}_{\mathrm{u}}:=\gamma_{\mathrm{u}} \gamma_{0}$.
From the Euclidean direction object u, we can dilate to an arbitrary 1-vector $p_{u}=\lambda_{u} u, \lambda_{u} \in \mathbb{R}$ with magnitude $\left|\mathrm{p}_{\mathrm{u}}\right|=\left|\lambda_{\mathrm{u}}\right|$, that in the basis $\left\{\sigma_{k}\right\}$ is $\mathrm{p}_{\mathrm{u}}=\sum_{k=1}^{2 \text { or } 3} \lambda_{k} \sigma_{k}$, where $\lambda_{k}=\lambda_{\mathrm{u}} \mathrm{u} \cdot \sigma_{k}$ From this, we construct a paravector like (5.342) with an arbitrary development parameter λ_{0}

$$
\mathcal{P}_{\mathrm{u}}=\lambda_{0}+\mathrm{p}_{\mathrm{u}}=\lambda_{0} 1+\lambda_{\mathrm{u}} \mathrm{u}
$$

Letting this paravector left operate on the development direction unit quantum γ_{0} we achieve by the invention of a generalised Minkowski 1-vector in a pure $\langle A\rangle_{1}$ grade form in STA as (5.345)
(5.353) $\quad p_{\mathrm{u}}=\mathfrak{p} \gamma_{0}=\lambda_{0} \gamma_{0}+\mathrm{p}_{\mathrm{u}} \gamma_{0}=\lambda_{0} \gamma_{0}+\lambda_{\mathrm{u}} \gamma_{\mathrm{u}}=\lambda_{0} \gamma_{0}+\lambda_{k} \gamma_{k}=\lambda_{\mu} \gamma_{\mu}, \quad \lambda_{\mu} \in \mathbb{R}, \quad(\mu=0, k)$ The extension Clifford conjugated of this is
(5.354) $\quad \bar{p}_{\mathrm{u}}=\bar{\jmath} \gamma_{0}=\lambda_{0} \gamma_{0}-\mathbf{p}_{\mathrm{u}} \gamma_{0}=\lambda_{0} \gamma_{0}-\lambda_{\mathrm{u}} \gamma_{\mathrm{u}}=\lambda_{0} \gamma_{0}-\lambda_{k} \gamma_{k}=\lambda_{\mu} g_{\mu \mu} \gamma_{\mu}, \quad g_{\mu \mu}=\left({ }^{1}{ }^{-1}{ }_{-1}{ }_{-1}\right)$. Now we have a subject p in the Minkowski space to act on by the \mathcal{B}_{u}-plane Lorentz rotor
$U_{\zeta, u}=e^{+1 / 2 \zeta \mathcal{B}_{u}}=\cosh (1 / 2 \zeta)+\mathcal{B}_{u} \sinh (1 / 2 \zeta)$
The conjugated of this is achieved by the reversed \mathcal{B}-bivector (5.306) $\overline{\mathcal{B}}=\widetilde{\mathcal{B}}=\mathcal{B}^{\dagger}=-\mathcal{B}$
$\widetilde{U}_{\zeta, \mathrm{u}}=e^{-1 / 2 \zeta \mathcal{B}_{\mathrm{u}}}=\cosh (1 / 2 \zeta)-\mathcal{B}_{\mathrm{u}} \sinh (1 / 2 \zeta)=U_{\zeta, \mathrm{u}}^{\dagger}$
The \mathcal{B}_{u}-plane Lorentz rotor is unitary
$U_{\zeta, \mathrm{u}} \widetilde{U}_{\zeta, \mathrm{u}}=\widetilde{U}_{\zeta, \mathrm{u}} U_{\zeta, \mathrm{u}}=e^{0}=\cosh ^{2}(1 / 2 \zeta)-\sinh ^{2}(1 / 2 \zeta)=1$.
We form the Lorentz rotation by the canonical form
(5.358) $\quad p_{\mathrm{u}}^{\prime}=\underline{U}_{\zeta} p_{\mathrm{u}}=U_{\zeta, \mathrm{u}} p_{\mathrm{u}} \widetilde{U}_{\zeta, \mathrm{u}}=e^{1 / 2 \zeta \mathcal{B}_{\mathrm{u}}} p_{\mathrm{u}} e^{-1 / 2 \zeta \mathcal{B}_{\mathrm{u}}}=e^{\zeta \mathcal{B}_{\mathrm{u}}} p_{\mathrm{u}}=U_{\zeta, \mathrm{u}}^{2} p_{\mathrm{u}}=\left(\cosh \zeta+\mathcal{B}_{\mathrm{u}} \sinh \zeta\right) p_{\mathrm{u}}$.

We split this into two parts, first the development of hyperbolic rotation

In Figure 5.53 green for $\lambda_{0} \geq 1$. Then second the extension like hyperbolic rotation
(5.360) $\quad \lambda_{\mathrm{u}} \gamma_{0}=U_{\zeta, \mathrm{u}}^{2} \lambda_{\mathrm{u}} \gamma_{\mathrm{u}}=e^{1 / 2 \zeta \mathcal{B}_{\mathrm{u}}} \lambda_{\mathrm{u}} \gamma_{\mathrm{u}}=\lambda_{\mathrm{u}}\left(\gamma_{\mathrm{u}} \cosh \zeta+\mathcal{B}_{\mathrm{u}} \gamma_{\mathrm{u}} \sinh \zeta\right)=\lambda_{\mathrm{u}}\left(\gamma_{\mathrm{u}} \cosh \zeta+\gamma_{0} \sinh \zeta\right)$, yellow for $\lambda_{\mathrm{u}} \geq 1$ in Figure 5.53. (The extended area where the autonomous information is void) The white area $\lambda_{0} \leq 1$ and $\lambda_{\mathrm{u}} \leq 1$ in Figure 5.53 is inside the limit of one quantum count in the cyclic oscillation that gives the development unit γ_{0} of the entity that possesses the isometry
(5.361)

$$
\left|\gamma_{0}\right|=\left|\gamma_{\mathrm{u}}\right|=1 \quad=\left|\gamma_{1}\right|=\left|\gamma_{2}\right|=\left|\gamma_{3}\right|=1 \quad \Leftrightarrow \quad\left|\gamma_{\mu}\right|=1 .
$$

The information of any Minkowski STA 1 -vector p_{u} to and from the entity follows the Lorentz rotation invariant null line directions $\{n, \bar{n}\}$ in the \mathcal{B}_{u}-plane. The directions of γ_{0} and γ_{u} are altered by the Lorentz rotation, but their orthonormality (5.303) is invariant preserved just as (5.321)
(5.362) $\quad \gamma_{0}^{\prime} \cdot \gamma_{\mathrm{u}}^{\prime}=0$ and $\quad\left|\gamma_{0}^{\prime}\right|=\left|\gamma_{\mathrm{u}}^{\prime}\right|=1$.

As orthonormal subjects, these directions are never perpendicular objects for us! (Kein Ding für uns) The drawn 1-vector direction of the development γ_{0} in Figure 5.50, Figure 5.51 and Figure 5.53 as an intuition perpendicular object to the extension direction γ_{1} is an illusion! They just display in a diagram an instrumentalization of a development measure substance as a subject of one quantum count γ_{0}. The magnitude as (5.346) of any STA 1 -vector is invariant preserved by the unitary Lorentz rotation given by the canonical form (5.358), in the \mathcal{B}_{u}-plane simply $p_{\mathrm{u}}^{\prime}=e^{\zeta \mathcal{B}_{\mathrm{u}}} p_{\mathrm{u}}$
$\left|p_{\mathrm{u}}^{\prime}\right|=\left|e^{\zeta \mathcal{B}_{\mathrm{u}}} p_{\mathrm{u}}\right|=\left|e^{\zeta \mathcal{B}_{\mathrm{u}}}\right|\left|p_{\mathrm{u}}\right|=\left|p_{\mathrm{u}}\right|, \quad$ because of $\left|e^{\zeta \mathcal{B}_{\mathrm{u}}}\right|^{2}=e^{\zeta \mathcal{B}_{\mathrm{u}}} e^{-\zeta \mathcal{B}_{\mathrm{u}}}=e^{0}=1$.
This agrees with the component coordinates $\left(\lambda_{0}, \lambda_{u}\right)$ from (5.359) and (5.360) that is preserved. It is the orthonormal basis 1-vectors that change the directions $\left\{\gamma_{0}, \gamma_{\mathrm{u}}\right\} \leftrightarrow\left\{\gamma_{0}^{\prime}, \gamma_{\mathrm{u}}^{\prime}\right\}$ inside the \mathcal{B}_{u}-plane $\mathcal{B}_{\mathrm{u}}^{\prime}=\mathcal{B}_{\mathrm{u}}=\gamma_{0} \gamma_{\mathrm{u}}=\gamma_{0}^{\prime} \gamma_{\mathrm{u}}^{\prime}$.
What implication does this have on the physical world? We view intuit at two identical entities that are distinguishable Ψ and Ψ^{\prime}, each has their individual frames $\Psi \sim\left\{\gamma_{0}, \gamma_{\mathrm{u}}\right\}$ and $\Psi^{\prime} \sim\left\{\gamma_{0}^{\prime}, \gamma_{\mathrm{u}}^{\prime}\right\}$. These identical entities have the same primary qualities possessing equal quantities: λ_{0} and λ_{u} It is the orthonormal frame directions inside the Minkowski \mathcal{B}_{u}-plane that the Lorentz rotation change in the information transmission boost. An example is two Hydrogen spectrums ${ }_{1}^{1} \mathrm{H}$ and ${ }_{1}^{1} \mathrm{H}^{\prime}$ that for each local autonomy is the same but look different due to the boost of frame reference ${ }_{1}^{1} \mathrm{H}^{\prime}$.

5.7.4.2. The Lorentz Transformation of a paravector

The Lorentz rotor (5.355) is written with implicit knowledge of the development unit quantum γ_{0}, when multiplying with $\gamma_{0} \gamma_{0}=\gamma_{0}^{2}=1$ we can by (5.348) write (for details see below section 5.8) (5.364) $\quad U_{\zeta, u}=\cosh (1 / 2 \zeta)+u \sinh (1 / 2 \zeta)=\cosh (1 / 2 \zeta u)+\sinh (1 / 2 \zeta u)=e^{1 / 2 \zeta u}=\exp (1 / 2 \zeta u)$

Going back to the paravector form (5.352) $\mathcal{P}_{\mathrm{u}}=\lambda_{0}+\mathrm{p}_{\mathrm{u}}=\lambda_{0} 1+\lambda_{\mathrm{u}} \mathrm{u}=p_{\mathrm{u}} \gamma_{0}$.
We find that the Lorentz rotation by the canonical form (5.358) can be written

$$
\mathcal{p}_{\mathrm{u}}^{\prime}=e^{1 / 2 \zeta \mathrm{u}} \mathcal{P}_{\mathrm{u}} e^{-1 / 2 \zeta \mathrm{u}}=e^{\zeta \mathrm{u}} \mathcal{P}_{\mathrm{u}}=(\cosh \zeta+\mathrm{u} \sinh \zeta) \mathcal{P}_{\mathrm{u}}=(\cosh \zeta+\mathrm{u} \sinh \zeta)\left(\lambda_{0}+\lambda_{\mathrm{u}} \mathrm{u}\right) .
$$ Here we lose knowledge, the rotation plane is undefined; we only have one 1 -vector direction u. We need a \mathcal{B}-bivector to define a rotation plane direction. This problem is obvious when we split it into two parts, first, the hyperbolic rotation of the development scalar is not a scalar $e^{1 / 2 \zeta u} \lambda_{0}=\lambda_{0}(\cosh \zeta+u \sinh \zeta)$, but we get a new Lorentz transformed scalar

$\lambda_{0}^{\prime}=\lambda_{0} \cosh \zeta+\lambda_{\mathrm{u}} \sinh \zeta$,
and an invariant Euclidean 1-vector direction u with a Lorentz transformed magnitude

(5.367)

$\lambda_{\mathrm{u}}^{\prime} \mathrm{u}=\left(\lambda_{\mathrm{u}} \cosh \zeta+\lambda_{0} \sinh \zeta\right) \mathrm{u}$.
The magnitude of the paravector $\mathcal{P}_{\mathrm{u}}^{\prime}=\lambda_{0}^{\prime} 1+\lambda_{\mathrm{u}}^{\prime} \mathrm{u}$ is as (5.363) preserved $\left|\mathcal{X}_{\mathrm{u}}^{\prime}\right|=\left|\mathcal{P}_{\mathrm{u}}\right|$
We conclude that a unit Euclidean 1-vector $u^{2}:=1$ defining the extension direction u of a local entity is invariant preserved by the Lorentz rotation transformation for the autonomous entity In traditional language, when you see a galaxy, your looking direction towards that galaxy is

C Jens Erfurt Andresen, M.Sc. NBI-UCPH

