- II. . The Geometry of Physics – 5. The Geometric Plane Concept – 5.7. Plane Concept Idea of a Non-Euclidean Clifford

5.7.4. Lorentz Rotation in the Minkowski *B*-plane

In Figure 5.53 we display the hyperbola curves for invariant transformations by the scaling parameter λ of the nilpotent *null directions* (5.318) in a geometric Clifford algebra $\mathcal{G}_{1,1}(\mathbb{R})$. Using the idea from Kepler's second law, that the angular area of the curve is essential as a parameter for a transformation. The area unit element in Minkowski B-plane is just the B-bivector $\mathcal{B} \coloneqq \gamma_1 \gamma_0$, where $\mathcal{B}^2 \coloneqq 1$. From this, we choose a real parameter $\zeta \in \mathbb{R}$ often called *rapidity* for the area argument $\frac{1}{2}\zeta \mathcal{B}$ in a hyperbolic multivector exponential function we call a Lorentz 1-rotor²⁸⁰

(5.349)
$$U_{\zeta} = e^{\frac{1}{2}\zeta\mathcal{B}} = \exp(\frac{1}{2}\zeta\mathcal{B}) = \cosh(\frac{1}{2}\zeta\mathcal{B}) + \sinh(\frac{1}{2}\zeta\mathcal{B})$$

The essential argument in this 1-rotor has a positive Clifford signature (+): $\mathcal{B}^2 = +|\mathcal{B}| \coloneqq 1$ $(\frac{1}{2}\zeta B)^2 = \frac{1}{4}\zeta^2 \ge 0$ (5.350)

The multivector value of the exponential function (5.349) exists in the mixed algebra $\mathcal{G}_{1,1}(\mathbb{R})$ of the Minkowski \mathcal{B} -plane. The algebra for these functions is analysed in the next section 5.8, but here we will use that cosh is even in its power series of $\beta^2 = 1$, causing cosh to be an even scalar, and that sinh is odd so that factor \mathcal{B} can be separated from the scalar function, then (5.349) is

(5.351)
$$U_{\zeta} = e^{\frac{1}{2}\zeta\mathcal{B}} = \cosh(\frac{1}{2}\zeta\mathcal{B}) + \sinh(\frac{1}{2}\zeta\mathcal{B}) = \cosh(\frac{1}{2}\zeta) + \mathcal{B}\sinh(\frac{1}{2}\zeta), \quad \zeta \in \mathbb{R}$$

To investigate the possible impact of such a Lorentz rotor we will intuit a Euclidean space $\mathcal{G}_2(\mathbb{R})$ or $\mathcal{G}_3(\mathbb{R})$ 1-vector unit *direction object* $\mathbf{u} = u_k \boldsymbol{\sigma}_k$ that has a measure $\gamma_0^2 = 1$ (5.348) mapping it to a *subject* 1-vector in a full Minkowski space $\mathcal{G}_{1,2}(\mathbb{R})$ or $\mathcal{G}_{1,3}(\mathbb{R})$ substance. The mapping is performed by right multiplying by the development measure *direction unit quantum* γ_0 : $\gamma_{\mu} \coloneqq \mathbf{u} \gamma_{0}$, producing a unit Minkowski \mathcal{B} -plane subject $\mathcal{B}_{\mu} \coloneqq \gamma_{\mu} \gamma_{0}$.

From the Euclidean *direction object* **u**, we can dilate to an arbitrary 1-vector $\mathbf{p}_{u} = \lambda_{u} \mathbf{u}, \lambda_{u} \in \mathbb{R}$ with magnitude $|\mathbf{p}_{\mathbf{u}}| = |\lambda_{\mathbf{u}}|$, that in the basis $\{\mathbf{\sigma}_k\}$ is $\mathbf{p}_{\mathbf{u}} = \sum_{k=1}^{2 \text{ or } 3} \lambda_k \mathbf{\sigma}_k$, where $\lambda_k = \lambda_{\mathbf{u}} \mathbf{u} \cdot \mathbf{\sigma}_k$. From this, we construct a paravector like (5.342) with an arbitrary development parameter λ_0

(5.352)
$$\mathcal{P}_{\mathbf{u}} = \lambda_0 + \mathbf{p}_{\mathbf{u}} = \lambda_0 \mathbf{1} + \lambda_{\mathbf{u}} \mathbf{u}$$

Letting this paravector left operate on the development *direction unit quantum* γ_0 we achieve by the invention of a generalised Minkowski 1-vector in a pure $\langle A \rangle_1$ grade form in STA as (5.345)

(5.353)
$$p_{\mathbf{u}} = p\gamma_0 = \lambda_0\gamma_0 + \mathbf{p}_{\mathbf{u}}\gamma_0 = \lambda_0\gamma_0 + \lambda_{\mathbf{u}}\gamma_{\mathbf{u}} = \lambda_0\gamma_0 + \lambda_k\gamma_k = \lambda_\mu\gamma_\mu, \quad \lambda_\mu \in \mathbb{R}, \quad (\mu = 0, k)$$

The extension Clifford conjugated of this is

$$\overline{p}_{u} = \overline{p}\gamma_{0} = \lambda_{0}\gamma_{0} - \mathbf{p}_{u}\gamma_{0} = \lambda_{0}\gamma_{0} - \lambda_{u}\gamma_{u} = \lambda_{0}\gamma_{0} - \lambda_{k}\gamma_{k} = \lambda_{\mu}g_{\mu\mu}\gamma_{\mu}, \qquad g_{\mu\mu} = \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}.$$

Now we have a subject p in the Minkowski space to act on by the \mathcal{B}_{μ} -plane Lorentz rotor

(5.355)
$$U_{\zeta,\mathbf{u}} = e^{+\frac{1}{2}\zeta \mathcal{B}_{\mathbf{u}}} = \cosh(\frac{1}{2}\zeta) + \mathcal{B}_{\mathbf{u}}\sinh(\frac{1}{2}\zeta).$$

The conjugated of this is achieved by the reversed
$$\mathcal{B}$$
-bivector (5.306) $\overline{\mathcal{B}} = \widetilde{\mathcal{B}} = \mathcal{B}^{\dagger} = -\mathcal{B}$

(5.356)
$$\tilde{U}_{\zeta,\mathbf{u}} = e^{-\frac{1}{2}\zeta \mathcal{B}_{\mathbf{u}}} = \cosh(\frac{1}{2}\zeta) - \mathcal{B}_{\mathbf{u}}\sinh(\frac{1}{2}\zeta) = 0$$

The \mathcal{B}_{u} -plane Lorentz rotor is unitary

(5.357)
$$U_{\zeta,\mathbf{u}}\widetilde{U}_{\zeta,\mathbf{u}} = \widetilde{U}_{\zeta,\mathbf{u}}U_{\zeta,\mathbf{u}} = e^0 = \cosh^2(\frac{1}{2}\zeta) - \sinh^2(\frac{1}{2}\zeta)$$

We form the Lorentz rotation by the canonical form

8)
$$p'_{\mathbf{u}} = \underline{\mathcal{U}}_{\zeta,\mathbf{u}} p_{\mathbf{u}} = U_{\zeta,\mathbf{u}} p_{\mathbf{u}} \widetilde{\mathcal{U}}_{\zeta,\mathbf{u}} = e^{\frac{1}{2}\zeta \mathcal{B}_{\mathbf{u}}} p_{\mathbf{u}} e^{-\frac{1}{2}\zeta \mathcal{B}_{\mathbf{u}}} = e^{\zeta \mathcal{B}_{\mathbf{u}}} p_{\mathbf{u}} = U_{\zeta,\mathbf{u}}^2 p_{\mathbf{u}} = (\cosh \zeta + \mathcal{B}_{\mathbf{u}} \sinh \zeta) p_{\mathbf{u}}$$

= 1.

We split this into two parts, first the development of hyperbolic rotation

(5.359)
$$\lambda_0 \gamma_0' = U_{\zeta, \mathbf{u}}^2 \lambda_0 \gamma_0 = e^{\frac{1}{2} \zeta \mathcal{B}_{\mathbf{u}}} \lambda_0 \gamma_0 = \lambda_0 (\gamma_0 \cosh \zeta + \mathcal{B}_{\mathbf{u}} \gamma_0 \sinh \zeta) = \lambda_0 (\gamma_0 \cosh \zeta + \gamma_{\mathbf{u}} \sinh \zeta),$$

²⁸⁰ This area argument differs from the cyclic angular form of (5.192) $e^{i\theta}$ where the argument has a negative signature (-), $i^2 = -1$					
© Jens Erfurt Andresen, M.Sc. Physics, Denmark	-218 -	Research on the a priori of Physics –	December 2022		
For quotation reference use	e ISBN-13	· 978-8797246931			

 $\mathbf{\nabla}$ Geometric S. earc Critique 5 on th of Pure $\overline{\mathbf{0}}$ ρ Mathematical Reasoning priori of **Physics** Edition ens $\left(T\right)$ ndres Ō

- 5.7.4. Lorentz Rotation in the Minkowski -plane - 5.7.4.2 The Lorentz Transformation of a paravector -

In Figure 5.53 green for
$$\lambda_0 \ge 1$$
. Then second the extension
5.360) $\lambda_u \gamma_0 = U_{\zeta,u}^2 \lambda_u \gamma_u = e^{\frac{1}{2}\zeta B_u} \lambda_u \gamma_u = \lambda_u (\gamma_u \cosh \zeta + \log \log \alpha)$
vellow for $\lambda_u \ge 1$ in Figure 5.53. (The extended area

The white area $\lambda_0 \leq 1$ and $\lambda_1 \leq 1$ in Figure 5.53 is inside the limit of *one quantum* count in the cyclic oscillation that gives the development unit γ_0 of the *entity* that possesses the isometry

(5.361)
$$|\gamma_0| = |\gamma_u| = 1 = |\gamma_1| = |\gamma_2| = |\gamma_3| = 1 \iff$$

The information of any Minkowski STA 1-vector p_{μ} to and from the *entity* follows the Lorentz rotation invariant *null line directions* $\{n, \overline{n}\}$ in the \mathcal{B}_{μ} -plane. The *directions* of γ_0 and γ_{μ} are altered by the Lorentz rotation, but their orthonormality (5.303) is invariant preserved just as (5.321)

(5.362)
$$\gamma'_0 \cdot \gamma'_u = 0$$
 and $|\gamma'_0| = |\gamma'_u| = 1$.

As orthonormal subjects, these directions are never perpendicular objects for us! (Kein Ding für uns) The drawn 1-vector *direction* of the development γ_0 in Figure 5.50, Figure 5.51 and Figure 5.53 as an intuition perpendicular *object* to the extension *direction* γ_1 is an illusion! They just display in a diagram an instrumentalization of a development measure substance as a subject of one *quantum* count γ_0 . The magnitude as (5.346) of any STA 1-vector is invariant preserved by the unitary Lorentz rotation given by the canonical form (5.358), in the \mathcal{B}_{u} -plane simply $p'_{u} = e^{\zeta \mathcal{B}_{u}} p_{u}$ se of $|e^{\zeta \mathcal{B}_{\mathbf{u}}}|^2 = e^{\zeta \mathcal{B}_{\mathbf{u}}}e^{-\zeta \mathcal{B}_{\mathbf{u}}} = e^0 = 1.$ from (5.359) and (5.360) that is preserved. *directions* $\{\gamma_0, \gamma_1\} \leftrightarrow \{\gamma'_0, \gamma'_1\}$ inside the

(5.363)
$$|p'_{u}| = |e^{\zeta B_{u}}p_{u}| = |e^{\zeta B_{u}}||p_{u}| = |p_{u}|$$
, becaus
This agrees with the component coordinates $(\lambda_{0}, \lambda_{u})$
It is the orthonormal basis 1-vectors that change the
 \mathcal{B}_{u} -plane $\mathcal{B}'_{u} = \mathcal{B}_{u} = \gamma_{0}\gamma_{u} = \gamma'_{0}\gamma'_{u}$.
What implication does this have on the physical wor
that are distinguishable W and W' each has their indi

rld? We view intuit at two identical entities that are distinguishable Ψ and Ψ' , each has their individual frames $\Psi \sim \{\gamma_0, \gamma_1\}$ and $\Psi' \sim \{\gamma'_0, \gamma'_1\}$. These identical *entities* have the same *primary qualities* possessing equal *quantities*: λ_0 and λ_0 . It is the orthonormal frame *directions* inside the Minkowski \mathcal{B}_{μ} -plane that the Lorentz rotation change in the information transmission boost. An example is two Hydrogen spectrums $^{1}_{1}$ H and $^{1}_{1}$ H' that for each local autonomy is the same but look different due to the boost of frame reference $\frac{1}{4}$ H'.

5.7.4.2. The Lorentz Transformation of a paravector

The Lorentz rotor (5.355) is written with implicit knowledge of the development unit quantum γ_0 , when multiplying with $\gamma_0 \gamma_0 = \gamma_0^2 = 1$ we can by (5.348) write (for details see below section 5.8) $1 + \sinh(\frac{1}{2}\zeta \mathbf{u}) = e^{\frac{1}{2}\zeta \mathbf{u}} = \exp(\frac{1}{2}\zeta \mathbf{u})$

(5.364)
$$U_{\zeta,\mathbf{u}} = \cosh(\frac{1}{2}\zeta) + \mathbf{u}\sinh(\frac{1}{2}\zeta) = \cosh(\frac{1}{2}\zeta\mathbf{u})$$

Going back to the paravector form (5.352) $p_u = \lambda_0 + p_u = \lambda_0 1 + \lambda_u u = p_u \gamma_0$. We find that the Lorentz rotation by the canonical form (5.358) can be written

(5.365)
$$\mathcal{P}'_{\mathbf{u}} = e^{\frac{1}{2}\zeta \mathbf{u}} \mathcal{P}_{\mathbf{u}} e^{-\frac{1}{2}\zeta \mathbf{u}} = e^{\zeta \mathbf{u}} \mathcal{P}_{\mathbf{u}} = (\cosh \zeta + \mathbf{u} \operatorname{s})$$

 $\sinh \zeta p_{\mathbf{u}} = (\cosh \zeta + \mathbf{u} \sinh \zeta)(\lambda_0 + \lambda_{\mathbf{u}} \mathbf{u}).$ Here we lose knowledge, the rotation plane is undefined; we only have one 1-vector *direction* u. We need a \mathcal{B} -bivector to define a rotation plane *direction*. This problem is obvious when we split it into two parts, first, the hyperbolic rotation of the development scalar is not a scalar $e^{\frac{1}{2}\zeta u}\lambda_0 = \lambda_0(\cosh \zeta + u \sinh \zeta)$, but we get a new Lorentz transformed scalar

(5.366)
$$\lambda'_0 = \lambda_0 \cosh \zeta + \lambda_u \sinh \zeta,$$

and an invariant Euclidean 1-vector *direction* u with a Lorentz transformed magnitude

(5.367)
$$\lambda'_{\mathbf{u}}\mathbf{u} = (\lambda_{\mathbf{u}}\cosh\zeta + \lambda_{0}\sinh\zeta)\mathbf{u}$$

The magnitude of the paravector $p'_{u} = \lambda'_{0}1 + \lambda'_{u}u$ is as (5.363) preserved $|p'_{u}| = |p_{u}|$. We conclude that a unit Euclidean 1-vector $\mathbf{u}^2 \coloneqq 1$ defining the extension *direction* \mathbf{u} of a local *entity* is invariant preserved by the Lorentz rotation transformation for the autonomous *entity*. In traditional language, when you see a galaxy, your looking *direction* towards that galaxy is

Ĉ	Jens Erfurt Andresen, M.Sc. NBI-UCPH,	- 219 -

For quotation reference use: ISBN-13: 978-8797246931

(5.35)

ension like hyperbolic rotation

 $+ \mathcal{B}_{\mu} \gamma_{\mu} \sinh \zeta = \lambda_{\mu} (\gamma_{\mu} \cosh \zeta + \gamma_{0} \sinh \zeta),$

where the autonomous information is void)

 $|\boldsymbol{\gamma}_{\boldsymbol{\mu}}| = 1.$