

5．7．2．3．Minkowski Space with Display of Three Extension Dimensions
We follow the display with the development direction γ_{0} vertical and the null directions turned $\pm 45^{\circ}$ from this in the \mathcal{B}_{1}－bivector－plane．In Figure 5.54 we display the projection of the extension directions γ_{1} and γ_{2} with the hyperbola transformation parameter λ close to one in the defining formula（5．319）as $\gamma_{1}(\lambda \cong 1)$ and $\gamma_{2}(\lambda \cong 1)$ ．The same we do in Figure 5.55 where we further introduce the third extension direction γ_{3} ，with $\lambda \rightarrow 0$ ；projection of $\gamma_{3}(\lambda=\tilde{0})$ displayed antiparallel $\downharpoonleft \uparrow$ to $\gamma_{0}, \gamma_{3} \| \gamma_{0}$ ．Chosen with the opposite orientation of the development direction． But attention；$\gamma_{0} \cdot \gamma_{3}=0$ ；there are all algebraically orthogonal $\gamma_{0} \cdot \gamma_{k}=0$ ，for $k=1,2,3$ ，（5．303）， and we too presume $\gamma_{1} \cdot \gamma_{2}=\gamma_{2} \cdot \gamma_{3}=\gamma_{3} \cdot \gamma_{1}=0$ ． The projection mapping of the Minkowski basis $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ with signatures $(+,-,-,-)$ into the Euclidean basis $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ with signatures $(+,+,+)$ is performed by the multiplication operations（5．328）

$$
\gamma_{1} \rightarrow \sigma_{1} \leftrightarrows \gamma_{1} \gamma_{0}
$$

convers
$\sigma_{2} \rightarrow \gamma_{2} \leftrightarrows \sigma_{2} \gamma_{0}$
$\gamma_{3} \rightarrow \sigma_{3} \leftrightarrows \gamma_{3} \gamma_{0}, \quad \sigma_{3} \rightarrow \gamma_{3} \leftrightarrows \sigma_{3} \gamma_{0}$
In Figure 5.55 we will imagine that the third Minkowski \mathcal{B}_{3}－bivector－plane $\mathcal{B}_{3}^{2}=1, \mathcal{B}_{3}:=\gamma_{3} \gamma_{0}$ has the same start direction as $\mathcal{B}_{1}:=\gamma_{1} \gamma_{0} \rightarrow \sigma_{1} .\left(\mathcal{B}_{3}\right.$ as \mathcal{B}_{2} is un－displayed $)$ The invariant nilpotent null directions n and \bar{n} in the \mathcal{B}_{1}－bivector－plane is a translation invariant moved one unit along the $\pm \gamma_{2}$ direction of the Figure 5.55 display． The idea is that the entity represented by this frame is rotating with an oscillation in the extension plane $\gamma_{1} \gamma_{2}$ $O=e^{\gamma_{1} \gamma_{2} \theta}=e^{i \theta}$ ，relative to an external laboratory．
By this oscillating rotation of both \mathcal{B}_{3} and \mathcal{B}_{1}－bivector directions the nilpotent isotropic directions are twisted up in two opposite equal－orientated null helixes stretched out in the past as the oscillator is propagating into the future．It is the nilpotence of the null basis $\{n, \bar{n}\}(5.310) n^{2}=\bar{n}^{2}=0$（5．311）that makes this invariant stretching possible carrying an information signal through the development from the past we call the subton memory space of extension．
This signal of information through space is what we in chapter I． 3.4 called a subton，which was displayed in Figure 3．13．where we did not have the nilpotent concept idea，but implicit had，that carrier time always is $t_{\overrightarrow{c^{\boldsymbol{a}}}}=0$ throughout the propagation as described in section I．3．5．2，and which transfer of information in principle is displayed in Figure 3．14．The subton idea is the a priori foundation concept of a $U(1)$ spin－1－rotor oscillator propagating with the speed of information， which we set isometric equal to one，where the autonomous measure is one count of quantum in the oscillation of the subton entity development． The primitive subton idea is the foundation for the concept of a photon（and properly also gluons）

Figure 5．55 The four－dimensional Minkowski space projected into the figure plane．The extension space is generated by a plane cyclic oscillating rotation producing a helix－formed nilpotent null curve of development． The frame $\left\{\sigma_{k}\right\}$ performs a rotating oscillation around
（C）Jens Erfurt Andresen，M．Sc．Physics，Denmark

5．7．3．The Paravector Space and the Minkowski 1－vector in STA

In \S 5．5．4．2（5．240）we defined the foundation of a paravector as a scalar plus a 1 －vector （5．342）$\quad p=\lambda_{0}+\mathrm{p}=\lambda_{0} 1+\lambda_{1} \mathrm{u}$ ．

The 1 －vector can have different directions $\mathbf{p}=\lambda_{1} \boldsymbol{\sigma}_{1}+\lambda_{2} \boldsymbol{\sigma}_{2}$ in a Euclidean plane $\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}\right\}$ or in space $\left\{\boldsymbol{\sigma}_{k}\right\}, \quad \mathrm{p}=\lambda_{k} \boldsymbol{\sigma}_{k}$ ，for $k=1,2,3 .{ }^{278}$ The para－multi－vectors of grade form $\langle A\rangle_{0}+\langle A\rangle_{1}$ are then

$$
p=\lambda_{0}+\mathrm{p}=\lambda_{0} 1+\lambda_{k} \sigma_{\mathrm{k}} .
$$

The pure magnitude of the paravector is given from（5．253）－（5．255）as

$$
\text { (5.344) } \quad|\mathcal{P}|=|\overline{\mathfrak{P}}|=\sqrt{|\mathfrak{p} \overline{\mathfrak{P}}|}=\sqrt{\left|\lambda_{0}^{2}-\lambda_{1}^{2}-\lambda_{2}^{2}-\lambda_{3}^{2}\right|} \geq 0
$$

The paravector space is supported from the mixed basis $\left\{1, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ of form $\langle A\rangle_{0}+\langle A\rangle_{1}$ To see how the paravector concept looks like in Minkowski space we map by multiplication operation from the right with the quantum count of development expressed as the 1－vector unit γ_{0}
（5．345）$\quad p=\rho \gamma_{0}=\lambda_{0} \gamma_{0}+\mathrm{p} \gamma_{0}=\lambda_{0} \gamma_{0}+\lambda_{k} \sigma_{k} \gamma_{0}=\lambda_{0} \gamma_{0}+\lambda_{k} \gamma_{k}=\lambda_{\mu} \gamma_{\mu} . \quad$ Use（5．328）$\sigma_{k} \gamma_{0}=\gamma_{k}$
This is a 1 －vector in a four－dimensional Minkowski space supported as a span from the orthonorma 1 －vector basis $\left\{\gamma_{\mu}\right\}$ ，for $\mu=0,1,2,3 .{ }^{279}$ Here the multivector form is a pure $\langle A\rangle_{1}$ ，i．e．，a primary quality of first grade（pqg－1）with the development count as the quantity unit．The geometric algebra founded on this basis $\left\{\gamma_{\mu}\right\}$ we as Hestenes［6］ 1966 call Space－Time－Algebra（STA）． The 1 －vector basis $\left\{\gamma_{\mu}\right\}$ is sometimes called a Dirac basis of STA－or just－a Minkowski basis． The magnitude of such a 1 －vector $p=\lambda_{\mu} \gamma_{\mu}$ in the Minkowski metric is given by the quadratic form （5．346）$p^{2}=\left(\lambda_{\mu} \gamma_{\mu}\right)^{2}=\lambda_{0}^{2}-\lambda_{1}^{2}-\lambda_{2}^{2}-\lambda_{3}^{2} \Rightarrow|p|=\sqrt{\left|p^{2}\right|}=\sqrt{\left|\lambda_{0}^{2}-\lambda_{1}^{2}-\lambda_{2}^{2}-\lambda_{3}^{2}\right|} \geq 0$ ．

The two pictures describe the same structure of a physical entity therefore the magnitude $|p|=|\mathcal{p}|$ ． Expressed from the supporting 1－vector basis $\left\{\gamma_{\mu}\right\}$ the Cartesian basis $\left\{\boldsymbol{\sigma}_{k}\right\}=\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \sigma_{3}\right\}$ looks like a Minkowski \mathcal{B}－bivector basis $\left\{\mathcal{B}_{k}\right\}$ by the map（5．326） $\mathcal{B}_{k}:=\gamma_{k} \gamma_{0} \leftrightarrow \sigma_{k}$ The Cartesian basis $\left\{\boldsymbol{\sigma}_{k}\right\}$ supports the Euclidean space by 1 －vectors describing the Cartesian extension of locality for an entity in physics．Adding a scalar dimension to the Cartesian frame gives us a paravector（5．343）with a mixed basis $\{1, u\},\left\{1, \sigma_{1}, \sigma_{2}\right\}$ or $\left\{1, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ ．
This paravector picture split the picture of STA developing space with four direction dimensions into a scalar part without direction and one，two or three Cartesian extension directions σ_{k} ．
This agrees with the classical way to interpret space extension with a distance measure separated from the development of time as a pure scalar measure from a clock without extensive direction Contrary if the local cyclic oscillating rotation clock produces the direction of quantum counts γ_{0} and we can right multiply it to the paravector basis using（5．328）and get the STA basis
（5．347）$\quad\left\{1 \gamma_{0}, \sigma_{1} \gamma_{0}, \sigma_{2} \gamma_{0}, \sigma_{3} \gamma_{0}\right\}=\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ ，
then γ_{0} by inheritance to the common measure of extensions gives the performed development．
Having a single 1 －vector direction u in a Euclidean space $u^{2}=1$ ，we can choose it as a frame basis 1 －vector e．g．，$\sigma_{1}=\mathrm{u}$ ．We multiply this with $\gamma_{0} \gamma_{0}=\gamma_{0}^{2}=1$ and get the mapping operation $\mathrm{u}=\mathrm{u} \gamma_{0} \gamma_{0}=\boldsymbol{\sigma}_{1} \gamma_{0} \gamma_{0}=\gamma_{1} \gamma_{0}=\mathcal{B}_{1}=\mathcal{B}$
We hereby see that the Euclidean 1 －vector direction u is synonymous with a Minkowski \mathcal{B}－bivector including an autonomous development quantum measure count of its own unit extension． We note that these two concepts have the same Clifford signature（ + ）：$u^{2}=1$ and $\mathcal{B}^{2}=1$ ． Physical entities that we represent by Euclidean 1－vectors are in Space－Time Algebra（STA） represented by \mathcal{B}－bivectors with positive signature（ + ）．

[^0]
[^0]: ${ }^{278}$ Here we use Einstein sum convention $\lambda_{k} \sigma_{k}=\sum_{k=1}^{2 \text { or } 3} \lambda_{k} \sigma_{k}$ over double indices，and low indices for the covariant coordinates in the orthonormal frame of the Euclidian space，to keep intuition simple．More about $k=3,\left\{\boldsymbol{\sigma}_{k}\right\}$ in chapter 6
 ${ }^{29}$ Note we commonly use Greek letter indices for four－dimensional Minkowski space and Latin indices for Euclidian 1，2，3 support． （C）Jens Erfurt Andresen，M．Sc．NBI－UCPH，

