Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

5.7.2.2. The Traditional Display of the Minkowski spac

In Figure 5.54 we display the extension in two dimensions γ_{1}, γ_{2} (two 1 -vector directions) as an extension plane $\gamma_{1} \gamma_{2}$, supported by an ordinary spacelike bivector direction $\gamma_{1} \gamma_{2}$, where
$\left(\gamma_{1} \gamma_{2}\right)^{2}=\gamma_{1} \gamma_{2} \gamma_{1} \gamma_{2}=-\gamma_{1} \gamma_{1} \gamma_{2} \gamma_{2}=-1$.
We 'look' into the depth of the passed side of this extension plane of Figure 5.54 with a unit circle ring \bigcirc symbolising the rotation symmetry around the information development direction. Then we have two directions of the two Minkowski \mathcal{B}_{k}-bivector-planes
(5.333) $\quad \mathcal{B}_{1}:=\gamma_{1} \gamma_{0}, \quad \mathcal{B}_{2}:=\gamma_{2} \gamma_{0}, \quad$ with $\mathcal{B}_{1}^{2}=\mathcal{B}_{2}^{2}=1$.

We add these two together as a function of the circular rotation with the Euler angle argument θ
(5.334) $\quad \mathcal{B}_{\theta}=\cos (\theta) \mathcal{B}_{1}+\sin (\theta) \mathcal{B}_{2}=\gamma_{\theta} \gamma_{0}=\left(\cos (\theta) \gamma_{1}+\sin (\theta) \gamma_{2}\right) \gamma_{0}$

Right multiplying the last parenthesis with $-\gamma_{1} \gamma_{1}=1$ we achieve the Euler rotation
(5.335) $\quad \mathcal{B}_{\theta}=\gamma_{\theta} \gamma_{0}=\left(\cos \theta+\gamma_{1} \gamma_{2} \sin \theta\right) \gamma_{1} \gamma_{0}=\left(e^{\gamma_{1} \gamma_{2} \theta}\right) \mathcal{B}_{1}$.

To intuit this, we project the subject \mathcal{B}-planes $\mathcal{B}_{1}, \mathcal{B}_{2}$, and \mathcal{B}_{θ} into our object plane given by $\boldsymbol{i}:=\sigma_{2} \sigma_{1}$, using the projection mapping operation rules expressed in (5.328)

$$
\text { (5.336) } \quad \boldsymbol{\sigma}_{1} \leftrightarrows \gamma_{1} \gamma_{0}=\mathcal{B}_{1}, \quad \boldsymbol{\sigma}_{2} \leftrightarrows \gamma_{2} \gamma_{0}=\mathcal{B}_{2}, \quad \text { and } \quad \hat{\mathbf{r}}_{\theta} \leftrightarrows \gamma_{\theta} \gamma_{0}=\mathcal{B}_{\theta}=e^{\gamma_{1} \gamma_{2} \theta} \mathcal{B}_{1} \equiv e^{i \theta} \boldsymbol{\sigma}_{1}
$$

Now the extension plane supported by $\gamma_{1} \gamma_{2}$ is mapped into the Euclidean plane supported by $\boldsymbol{i}=\sigma_{2} \boldsymbol{\sigma}_{1} \leftrightarrows \gamma_{1} \gamma_{2}$. Here the rotation is described by the 1-rotor $\hat{\mathbf{r}}_{\theta} \sigma_{1}=e^{i \theta}$, for $\forall \theta \in \mathbb{R}$.
Also for the \mathcal{B}_{θ} direction, we note that $\gamma_{\theta}^{2}=-1$ is Minkowski space extension signature (-). The nilpotent isotropic signal of information from the isometric idea $\left|\gamma_{\theta}\right|=\left|\gamma_{0}\right|=1$ when gives the null line balance $\left|\tau \gamma_{\theta}\right|=\left|\tau \gamma_{0}\right|=\tau \in \mathbb{R}$. This null line situation is rotated with $e^{\gamma_{1} \gamma_{2} \theta}$ around the development direction γ_{0} in a so-called null cone. When inside this cone, information can be exchanged for future expectations called events or from passed phenomena called memory. The development is driven by the circling oscillator $O=e^{\gamma_{1} \gamma_{2} \theta} \leftrightharpoons e^{i \theta}=e^{i \theta \omega \tau}$, where the phase angle is $\theta=\omega \tau=\tau$ by defining the development parameter $\tau \in \overrightarrow{\mathbb{R}}\left[\widehat{\omega}^{-1}\right]$, setting its frequency energy $\omega=\widehat{\omega}:=1[\widehat{\omega}]$ as the counting clock norm. Then null tangent on the null cone seems to follow a conic spiral with expanding radius of $c\left|\theta \gamma_{\theta}\right|=c\left|\tau \gamma_{\theta}\right|$ relative to the reference $\left|\gamma_{0}\right|=1$ For $|\theta|>1$ the tangent speed of the oscillator rotating null cone in the display will grow and exceed the speed of information $c 1$. It is obvious that the extended circumference arcus speed of the circle oscillator does not exceed $c 1,(c=1)$ therefore a unit circle oscillator $\left|\hat{\mathbf{r}}_{\theta}\right|=\left|\gamma_{\theta}\right|=\left|\gamma_{0}\right|=1$ is the binding. The plane rotation $e^{i \theta}=e^{\sigma_{2} \sigma_{1} \theta}=e^{\gamma_{1} \gamma_{2} \theta}$ initiates a third normal extension direction $\sigma_{3} \leftrightarrows \gamma_{3} \gamma_{0}$ as an axis of rotation in 3 -space. ${ }^{275}$ The a priori idea is, that information development isometry is isotropic distributed over all extended directions in 3 -space, whence we judge

$$
\left|\gamma_{\theta}\right|=\left|\gamma_{1}\right|=\left|\gamma_{2}\right|=\left|\gamma_{3}\right|=\left|\gamma_{0}\right|=1 .
$$

From this isotropic isometry, we have ambiguity in what space extension direction to intuit for one quantum of information as a unit direction \mathcal{B}-bivector. The information isometry can only follow one nilpotent pair null lines direction $\mathcal{B}=n \wedge \bar{n}$ inside its Minkowski \mathcal{B}-plane direction. One intuit picture is the oscillation rotation of the information \mathcal{B}_{θ}-plane has one persistent oscillating 1 -vector extension direction γ_{θ} always orthogonal to the future-oriented development direction γ_{0} principal isotropic in all spatial directions a priori orthogonal to all these extensions $\forall \gamma_{\theta} \cdot \gamma_{0}=0$, it can be perpendicular to some extensions $\gamma_{0} \perp \gamma_{\theta}$ and parallel to one other direction, e.g. $\gamma_{0} \| \gamma_{3}$, but still always orthonormal $\gamma_{0} \cdot \gamma_{k}=0$ and $\left|\gamma_{\mu}\right|=1, \mu=0,1,2,3$, as

Actively γ_{0} can be parallel with one straight line extension direction e.g., $\sigma_{3} \leftrightarrows \gamma_{3} \gamma_{0}, \gamma_{3} \cdot \gamma_{0}=0$ and ambiguously simultaneous bee curved ${ }^{276}$ along the circumference arcus of the oscillating unit circle radius $\left|\hat{r}_{\theta}\right|=\left|\gamma_{\theta}\right|=1$ so that $\gamma_{0} \perp \gamma_{\theta}$ and substantial $\gamma_{0} \cdot \gamma_{\theta}=0$, (see below Figure 5.55).
${ }^{25}$ In chapter 6 we will look further into the structure of the three-dimensional natural 3-space
${ }^{276}$ The ideology of a tangent vector is not necessary strait. Straitens of a non-extensive development γ_{0} direction has no meaning
C Jens Erfurt Andresen, M.Sc. Physics, Denmark $\quad-214-\quad$ Research on the a priori of Physics - \quad December 2022
For quotation reference use: ISBN-13: 978-8797246931
Only one direction in the form of a \mathcal{B}_{θ}-plane can participate in the propagation of one quantum of active information at a time. This quantum direction is the nilpotent unit (5.312) $\mathcal{B}_{\theta}=n \wedge \bar{n}$ To possess the quality of autonomous extension for an entity it has to give its own measure in form of an oscillator giving the a priori count of development. The frequency energy of this oscillator we use as the norm i.e., $|\omega|=1$. The direction of oscillation we describe by the Euclidean plane bivector $\gamma_{1} \gamma_{2} \equiv \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}=\boldsymbol{i}$. The direction of development γ_{0} is orthonormal to both γ_{1} and γ_{2} expressed by (5.303). The bivector idea $\left(\gamma_{1} \gamma_{2}\right)$ is also orthogonal to γ_{0} in that the inner product
$\gamma_{0} \cdot\left(\gamma_{1} \gamma_{2}\right)=1 / 2\left(\gamma_{0} \gamma_{1} \gamma_{2}-\gamma_{1} \gamma_{2} \gamma_{0}\right)=0 .{ }^{277}$
Hereby we decide on a shortcut and promote the subject idea $\left(\gamma_{1} \gamma_{2}\right)$ to the object $\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}=\boldsymbol{i}$
$\gamma_{1} \gamma_{2}=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}=\boldsymbol{i}=\boldsymbol{i}_{3}$
and name \boldsymbol{i}_{3} for the plane bivector seen from a third extension direction (see below Figure 5.55) The plane circle oscillator for the autonomous isometric measure is short
$=e^{\gamma_{1} \gamma_{2} \theta}=e^{i \theta}=e^{i_{3} \theta}$
This circular oscillating 1-rotor of form $e^{i \theta}$ for the Euclidean plane leaves all the multivectors we have treated above invariant, but of course, changes their directions. Special the \mathcal{B}_{θ}-bivecto direction is rotated in this oscillation. Inside this \mathcal{B}_{θ}-plane the nilpotent null directions n and \bar{n} is invariant preserved also by the hyperbola transformation (5.322).

[^0]For quotation reference use: ISBN-13: 978-8797246931

[^0]: Here we use the mixed grade rule (6.43) below.
 he the wedge part $\gamma_{0}\left(\gamma_{1} \gamma_{2}=1 / 2\left(\gamma_{0} \gamma_{1} \gamma_{2}-\gamma_{1} \gamma_{2} \gamma_{0}\right)=\gamma_{1} \gamma_{2} \gamma_{0}=i \gamma_{3}\right.$ we get a 3 -vector as later below III. (7.15) Jens Eren
 © Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-215-\quad$ Volume I, - Edition 2-2020-22, - Revision 6, \quad December 2022

