Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931
'transverse' Clifford conjugated direction null 1-vector $\tilde{0} \bar{n},(\tilde{0} \bar{n})^{2}=0$ never vanish. We always have the invariant result (5.314) $n \bar{n}=(\vec{\infty} n)(\tilde{0} \bar{n})=1+\mathcal{B}$ of this hyperbola transformation.
5.7.1.3. The \mathcal{B}-bivector as an Information Signal

Of course, the non-directional scalar unit 1 is always preserved as the neutral element
The defined pseudoscalar $\mathcal{B}:=\gamma_{1} \gamma_{0} \Leftrightarrow n \wedge \bar{n}=\mathcal{B}$ as an \mathcal{B}-bivector supporting the Minkowski \mathcal{B}-plane is also always preserved by a hyperbola transformation. This pseudoscalar \mathcal{B}-bivector is defined as the product of the extension unit γ_{1} acting on the information development unit γ_{0}. The foundation idea of this is, that the propagating information signal about the extension has to be in balance. The primary isometric measure for this is the quadratic forms in balance (5.302)
$\gamma_{0}^{2}+\gamma_{1}^{2}=0 \quad \Leftrightarrow \quad \gamma_{0}^{2}=-\gamma_{1}^{2}$,
that demand the Clifford geometric algebra $\mathcal{G}_{1,1}(\mathbb{R})$ with signatures $(+,-)$.
In the natural geometric plane, we separate two points A, B by defining an ordinary unit 1 -vector $\sigma_{1}:=\overrightarrow{\mathrm{AB}}$, with $\sigma_{1}^{2}:=1$ as an ordinary metric signature $(+)$ in Euclidean line $\mathcal{G}_{1,0}(\mathbb{R})$, plane $\mathcal{G}_{2,0}(\mathbb{R})$ or space $\mathcal{G}_{3,0}(\mathbb{R})$. We settle out with the simple algebra of $\mathcal{G}_{1,0}(\mathbb{R})$ with the basis $\left\{1=\sigma_{1}^{2}, \sigma_{1}\right\}$. Here there is no pseudoscalar as $\lambda_{1} \sigma_{1} \wedge \sigma_{1}=0$ only the scalar auto-product $\sigma_{1} \cdot \sigma_{1}=\sigma_{1} \sigma_{1}=\sigma_{1}^{2}=1$, as the quadratic measure. The extension magnitude of this is $\left|\sigma_{1}\right|=\sqrt{\sigma_{1} \cdot \sigma_{1}}=1$.
In the tradition, this represents a ruler line direction drawn on a plane surface through A and B. As an external view, we let the abstract Minkowski \mathcal{B}-plane substance be projected into the plane surface, where we draw the 1 -vector object $\sigma_{1}:=\overrightarrow{\mathrm{AB}}$ one-to-one analogue to the physical extension direction in natural space. The idea is, that the \mathcal{B}-bivector is projection mapped onto σ_{1} Figure 5.52

$$
\mathcal{B} \rightarrow \mathcal{B}:=\gamma_{1} \gamma_{0}=\mathcal{B}_{1} \rightarrow \sigma_{1}
$$

The defined \mathcal{B}-bivector supports the Minkowski \mathcal{B}-plane direction governed by the stable invariant null line directions (5.310) of the null basis $\{n, \bar{n}\}$ with $n \wedge \bar{n}=\mathcal{B}$. The 1 -vector σ_{1} support the objective direction of a physical line. The abstraction is the direction map:
$\sigma_{1} \leftrightarrow n \wedge \bar{n}$.
We interpret the \mathcal{B}-bivector $\mathcal{B}=n \wedge \bar{n}$ as the isotropic ${ }^{272}$ signal of the objective unit direction σ_{1} The force of Geometric Algebra is, that the maps are replaced by multiplication operations
We make the direct connection $\gamma_{1} \gamma_{0} \leftrightarrow \boldsymbol{\sigma}_{1}$ and replace it with $\boldsymbol{\sigma}_{1} \leftrightarrows \gamma_{1} \gamma_{0}$. We generalise γ_{1} and σ_{1} with more dimensions as γ_{k} and σ_{k}, for $k=1,2,3$, and get the following multiplication rules

$$
\begin{array}{l|lll}
\text { (5.328) }
\end{array} \quad \begin{array}{rll}
\boldsymbol{\sigma}_{k} \leftrightarrows \gamma_{k} \gamma_{0}, & \boldsymbol{\sigma}_{k} \gamma_{0} \rightrightarrows \gamma_{k}, & \boldsymbol{\sigma}_{k} \gamma_{k} \rightrightarrows \gamma_{0} \\
-\boldsymbol{\sigma}_{k} \leftrightarrows \gamma_{0} \gamma_{k}, & \gamma_{0} \boldsymbol{\sigma}_{k} \rightrightarrows-\gamma_{k}, & \gamma_{k} \boldsymbol{\sigma}_{k} \rightrightarrows-\gamma_{0} .
\end{array} \quad \boldsymbol{\sigma}_{k} \leftarrow \mathcal{B}_{k}:=\gamma_{k} \gamma_{0}
$$

By this we have introduced a Minkowski space foundation basis $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ for the metric Clifford algebra $\mathcal{G}_{1,3}(\mathbb{R})$ with signatures $(+,-,-,-)$, we will call it a Dirac-Clifford algebra. ${ }^{27}$
5.7.2. The Traditional Display of the Minkowski \mathcal{B}-plane

In the tradition, the time axis is displayed vertically, and the spatial extension is displayed horizontally as in Figure 5.50. Here we try to make an autonomous measure of the development seen from the entity for our intuition. Therefore, we choose the cyclic quantum oscillator ${ }^{274}$ of the entity as an autonomous reference and make that unit count from this oscillator the measure of one quantum count of development γ_{0}. A space extension γ_{k} shall as a priori presumption be measured relative to the development as a signal of information about extension in a founding balance as (5.325)
$\gamma_{0}^{2}+\gamma_{k}^{2}=0 \Leftrightarrow \gamma_{0}^{2}=-\gamma_{k}^{2}, \quad$ for each $k=1,2,3, \quad$ as the primary quality of isometry
${ }^{272}$ The expression isotropic signal is the modern way to say Einstein's presumption of constant light speed in all space directions. ${ }^{23}$ We have chosen the basis names γ_{μ} as Hestenes [6] who mention the isomorphism with the group of Dirac matrices: called γ_{μ} We will look further into this structure of isotropic information signals relative to space extension below in chapter 7.1. etc.. The quantum oscillator is introduced and described in chapter I. 3 section 3.6
(C) Jens Erfurt Andresen, M.Sc. Physics, Denmark

For quotation reference use: ISBN-13: 978-8797246931

This is equivalently expressed as the nilpotent null basis $\{n, \bar{n}\}$ by (5.311) $n^{2}=\bar{n}^{2}=0$, and causes that the isotropic speed of information is one:

$$
c=\frac{\left|\gamma_{k}\right|}{\left|\gamma_{0}\right|}=1, \quad \text { because }\left|\gamma_{0}\right|=\left|\gamma_{k}\right|=1
$$

This is an a priori analytic judgment for the founding measurement of extension by an information signal travelling along the extension. These balanced units are displayed in Figure 5.53 as a S^{1} unit circle O for the autonomous entity for the unit basis $\left\{1, \gamma_{0}, \gamma_{k}, \mathcal{B}_{k}:=\gamma_{k} \gamma_{0}\right\}$ from one quantum count measure γ_{0} of development for a Minkowski \mathcal{B}_{k}-plane.

Figure 5.53 The Minkowski \mathcal{B}_{k}-plane in one γ_{k} extension direction relative to information development unit count γ_{0}. The local origo for the entity is displayed as the intersection of the Space Locality line for the development direction and the Local NOW line for the extension direction.
The isotropic null lines are an indication of the balance (5.330) $\tau \gamma_{0}\left|=\left|\tau \gamma_{k}\right|=\tau \in \mathbb{R}\right.$ where the speed of information is one. The invariant hyperbolic transformation (5.322) makes a signal of one quantum information possible inside the white areas of this display figure. This Minkowski \mathcal{B}-plane display makes it possible for YOU (as a Thomas Aquinas GOD) to 'look' into areas of Void, where the autonomous entity neither can experience any information signals by light nor gravitation.

Figure 5.54 The Minkowski space with two γ_{1}, γ_{2} extension directions forming the extension plane $\gamma_{1} \gamma_{2}$ direction relati o the development unit count γ_{0}. The local origo for the entity is now the intersection of the space locality line for the development direction and the local NOW plane of the extension plane direction. The isotropic null cone is an indication for the balance $\left|\tau \gamma_{0}\right|=\left|\tau \gamma_{\theta}\right|=\tau \in \mathbb{R}$, where $\gamma_{\theta}=\cos (\theta) \gamma_{1}+\sin (\theta) \gamma_{2}=\left(\cos \theta+\gamma_{1} \gamma_{2} \sin \theta\right) \gamma_{1}=e^{\gamma_{1} \gamma_{2} \theta} \gamma_{1}$ for the rotational plane symmetry of this null cone. In that $\gamma_{1} \gamma_{2}=-\gamma_{2} \gamma_{1}=\gamma_{2} \gamma_{0} \gamma_{1} \gamma_{0}=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}=\boldsymbol{i}$ for the extension plane, we have $\gamma_{\theta}=e^{\sigma_{2} \sigma_{1} \theta} \gamma_{1}$, for the rotation. Letting this act on the development symmetry γ_{0} we get $\mathcal{B}_{\theta}=\gamma_{\theta} \gamma_{0}=e^{\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1} \theta} \gamma_{1} \gamma_{0} \leftrightarrow \hat{\mathbf{r}}_{\theta}=e^{\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1} \theta} \boldsymbol{\sigma}_{1}$. Using the Euclidian plane pseudoscalar $\boldsymbol{i}=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$ the oscillation is $e^{i \theta}$

The white areas along the null lines in Figure 5.53 are where one quantum of development is an isometric measure of one unit of extension. This unit measure $n \bar{n}=1+\mathcal{B},(5.314)$ or just
the \mathcal{B}-bivector is invariant by hyperbola transformation (5.319) as (5.320) $\mathcal{B}_{k}=\gamma_{k}(\lambda) \gamma_{0}(\lambda)$, for $\forall \lambda \in \mathbb{R}, \lambda \neq 0$, in its direction and magnitude, $\mathcal{B}_{k}^{2}=1$. Here in one dimension of the extension direction γ_{k}, the invariant \mathcal{B}_{k}-bivector seems to have no restriction against development by $x^{0} \gamma_{0}, x^{0} \in \mathbb{R}$ of the extension $x^{k} \gamma_{k}, x^{k} \in \mathbb{R}$, as long as the memory knowledge of the past, giving
$\left|x^{k}\right| \leq\left|x^{0}\right|$, for $k=1,2,3$.
Note we use upper indices x^{k} for the contravariant coordinates due to the mixed metric (5.300)-(5.301) C Jens Erfurt Andresen, M.Sc. NBI-UCPH, $\quad-213-\quad$ Volume I, - Edition 2-2020-22, - Revision 6 ,

For quotation reference use: ISBN-13: 978-8797246931

