

For quotation reference use: ISBN-13: 978-8797246931

- 5.7.1. Plane Geometric Clifford Algebra with Minkowski Signature for Measure Information - 5.7.1.2 An Entity Seen

and still for the basis
$$\{1, \gamma_0(\lambda), \gamma_1(\lambda), \mathcal{B}\}$$
 algebraically orthonormality is preserved as $(5.303)^{271}$
(5.321) $\gamma_0(\lambda) \cdot \gamma_1(\lambda) = 0$, and $|\gamma_0(\lambda)| = |\gamma_1(\lambda)| = 1 \quad \Leftarrow \left| \left(\gamma_0(\lambda) \right)^2 \right| = \left| \left(\gamma_1(\lambda) \right)^2 \right| = 1.$

The basis $\{\gamma_0(\lambda), \gamma_1(\lambda)\}$ is the hyperbola transformed from the null basis $\{n, \overline{n}\}$. The former is orthonormal but remark that its display is certainly not perpendicular nor normal in Figure 5.51. We display this transformation invariant structure from the a priory *direction* $\mathcal{B} = n \wedge \overline{n}$ basis $\{n, \overline{n}\}$ displayed as perpendicular 1-vectors $\overline{n} \perp n$, but as the null-basis not orthogonal $n \cdot \overline{n} = 1$. $\{n, \overline{n}\}$ in Figure 5.51 turned by -45° from the defined *directions* displayed in Figure 5.50 above:

Figure 5.51 The invariant hyperbola transformed $\gamma_0(\lambda)$ and $\gamma_1(\lambda)$ is displayed in the null basis $\{n, \overline{n}\}$ diagram. We have chosen a perpendicular display of the null basis 1-vectors $\{n, \overline{n}\}$ representing the founding \mathcal{B} -bivector $\mathcal{B}=n\wedge\overline{n}$ defining the *direction* of the β -plane of this figure. The *null line* $n^2=0$ representing a possible light signal of information is displayed from left to right in the reading direction. The Clifford conjugated null line $\overline{n}^2 = 0$ is chosen displayed vertically perpendicular $\overline{n} \perp n$. Due to the *quality* of the full mixed null basis $\{1, n, \overline{n}, \beta = n \wedge \overline{n}\}$ of the *B*-plane (5.315) these are not orthogonal $n \cdot \overline{n} = 1$, (5.311) but multiplied invariant constant $n\overline{n} = n \cdot \overline{n} + n \wedge \overline{n} = 1 + \beta$. (5.314). The word *auto* refers to an autonomous *entity* that has a locality-now center, performed by the intersection of the locality development line *direction* γ_0 and the now extension line *direction* γ_1 , with the autonomous full mixed basis $\{1, \gamma_0, \gamma_1, \mathcal{B}\}$, (5.308). The invariant hyperbola transformed (5.319) $\gamma_0(\lambda)$ and $\gamma_1(\lambda)$ are displayed for the argument, e.g. $\lambda \sim 2.5$. The product $\beta = \gamma_1(\lambda)\gamma_0(\lambda)$ (5.320) and orthonormality (5.321) are invariant preserved for all values $\forall \lambda \in \mathbb{R}, \lambda \neq 0$. $\lambda < 0$ change orientation. $\lambda \rightarrow \infty$ gives the external fare away parallel units, and $\lambda \rightarrow 0$ is the local anti-parallel unit balance.

5.7.1.2. An Entity Seen from the External Far Distant as a Null Signal We have seen that the unit *direction* \mathcal{B} -bivector is invariant preserved for all $\forall \lambda \in \mathbb{R}, \lambda \neq 0$

 $\mathcal{B} = \gamma_1(\lambda)\gamma_0(\lambda) = n\wedge \overline{n},$ (5.322)

> We now look at $\lambda \to \infty$, and we note it as $\lambda = \overline{\infty}$, a whereby we from (5.320) and (5.318) write

(5.323)
$$\mathcal{B} = \gamma_1(\overrightarrow{\infty})\gamma_0(\overrightarrow{\infty}) = n\wedge\overline{n} = \overrightarrow{\infty}n\wedge\widetilde{0}\overline{n}$$
, and $n\cdot\overline{n} = \overrightarrow{\infty}n\cdot\widetilde{0}\overline{n} = 1$.
In our display practice, this form will result in

 $\gamma_0(\vec{\infty}) = \sqrt{\frac{1}{2}}(\vec{\infty}n + \vec{0}n) \to \vec{\infty}n, \text{ and}$ (5.324)

convergent towards *direction* n for the null 1-vector

²⁷¹ The reader is encouraged to verify this in detail, in that, it is fundamental t	
© Jens Erfurt Andresen, M.Sc. NBI-UCPH,	- 211 -
For quotation reference use	e: ISBN-13:

nd
$$\frac{1}{\lambda} = \tilde{0}$$
,

$$(\vec{\infty}) = \sqrt{\frac{1}{2}} (\vec{\infty}n - \tilde{0}\overline{n}) \rightarrow \vec{\infty}n,$$

 $(\vec{\infty}n)^2 = 0$, but the impact from the

o how one can perceive the physical world.