Restricted to brief peruse for research，reviews，or scholarly analysis，© with required quotation reference：ISBN－13：978－8797246931

The closed algebra for this basis fulfils the multiplication scheme shown in Table 5．2a．below
Besides this basis，we further form the non－zero null basis $\{n, \bar{n}\}$ for the \mathcal{B}－plane in $\mathcal{G}_{1,1}(\mathbb{R})$ defined by：

$$
n:=\sqrt{1 / 2}\left(\gamma_{0}+\gamma_{1}\right), \quad \text { and } \quad \bar{n}:=\sqrt{1 / 2}\left(\gamma_{0}-\gamma_{1}\right)
$$

with the nilpotent spectral basis properties
（5．311）

$$
n^{2}=\bar{n}^{2}=0, \quad \text { and } \quad \bar{n} \cdot n=n \cdot \bar{n}=1 .
$$

This basis idea does not possess orthogonality，though it displays perpendicular directions in Figure 5．50．
The pseudoscalar for $\{n, \bar{n}\}$ is the same as $(5.305)^{270}$

$n \wedge \bar{n}=\mathcal{B}$ ，

still with $\mathcal{B}^{2}=1$ ，and reversed like（5．306）as a bivector

$$
\overline{\mathcal{B}}=\widetilde{\mathcal{B}}=-\mathcal{B}=\bar{n} \wedge n,
$$

We have the product of the two null－basis－1－vectors
（5．314）$\quad n \bar{n}=n \cdot \bar{n}+n \wedge \bar{n}=1+\mathcal{B}$ ，and $\bar{n} n=1-\mathcal{B}$ ，
The full mixed null－basis for the \mathcal{B}－plane is
$\{1, n, \bar{n}, \mathcal{B}=n \wedge \bar{n}\}$
The operation of \mathcal{B} gives the direction absorptions

$$
\mathcal{B} n=n, \quad \mathcal{B} \bar{n}=-\bar{n},
$$

The closed algebra for this basis fulfils the multiplication scheme shown in Table 5．2b．
Table 5．2 Multiplication basis for the \mathcal{B}－plane algebra $\mathcal{G}_{1,1}(\mathbb{R})$ with the pseudoscalar unit $\mathcal{B}^{2}=1, \quad \mathcal{B} \equiv \gamma_{1} \gamma_{0}$

$$
\text { a: }\left\{1, \gamma_{0}, \gamma_{1}, \mathcal{B}\right\} \text { orthonormal }
$$

b：$\{1, n, \bar{n}, \mathcal{B}\}$ the null－basis

left right	1	γ_{0}	γ_{1}	\mathcal{B}
1	1	γ_{0}	γ_{1}	\mathcal{B}
γ_{0}	γ_{0}	+1	$-\mathcal{B}$	$-\gamma_{1}$
γ_{1}	γ_{1}	\mathcal{B}	-1	$-\gamma_{0}$
\mathcal{B}	\mathcal{B}	γ_{1}	γ_{0}	1

$$
\mathcal{B}^{2}=+1, \quad n^{2}=\bar{n}^{2}=0,
$$

leff	right	1	n	\bar{n}
1	1	n	\bar{n}	\mathcal{B}
n	n	0	$1+\mathcal{B}$	$-n$
\bar{n}	\bar{n}	$1-\mathcal{B}$	0	\bar{n}
\mathcal{B}	\mathcal{B}	n	$-\bar{n}$	1

$$
\overline{2} \bar{n}
$$

$$
n \mathcal{B}=-n
$$

$$
\bar{n} \mathcal{B}=\bar{n} .
$$

Two cases of $\gamma_{1} \gamma_{0}=\mathcal{B}=\mathcal{B}=n \wedge \bar{n}$,

$$
\gamma_{0} \gamma_{1}=\overline{\mathcal{B}}=-\mathcal{B}=\bar{n} \wedge n
$$

Figure 5.50 The null basis $\{n, \bar{n}\}$ with the Multivectors expressed as $M=\tau \gamma_{0} \pm \tau \gamma_{1}, \forall \tau \in \mathbb{R}$
null basis

$$
\gamma_{0}=\sqrt{1 / 2}(n+\bar{n}), \quad \text { and } \quad \gamma_{1}=\sqrt{1 / 2}(n-\bar{n})
$$

The nilpotence（5．311）of the null basis $\{n, \bar{n}\}$ makes it possible to scale the two bases as $\left\{\lambda n, \frac{1}{\lambda} \bar{n}\right\}$ in the way that we preserve the unit pseudoscalar \mathcal{B}－bivector and the inner product

$$
\mathcal{B}=\lambda n \wedge \frac{1}{\lambda} \bar{n}, \quad \text { and } \quad \frac{1}{\lambda} \bar{n} \cdot \lambda n=\lambda n \cdot \frac{1}{\lambda} \bar{n}=1, \quad \text { for } \forall \lambda \in \mathbb{R}, \quad \lambda \neq 0
$$

We see that the null basis 1 －vectors have no specific magnitudes，it is the direction \mathcal{B}－bivector pseudoscalar and the inner product scalar that is preserved in the multivector（5．314）$n \bar{n}=1+\mathcal{B}$ ． From this，we form the hyperbola transformed of（5．317）that is displayed in Figure 5.51

$$
\gamma_{0}(\lambda)=\sqrt{1 / 2}\left(\lambda n+\frac{1}{\lambda} \bar{n}\right), \quad \text { and } \quad \gamma_{1}(\lambda)=\sqrt{1 / 2}\left(\lambda n-\frac{1}{\lambda} \bar{n}\right), \quad \text { for } \quad \forall \lambda \in \mathbb{R}, \quad \lambda \neq 0 .
$$

Further from this we also have the preserved unit pseudoscalar area as（5．305）

（5．320）

$$
\mathcal{B}=\gamma_{1}(\lambda) \gamma_{0}(\lambda)
$$

270 The reason is：$n \wedge \bar{n}=1 / 2(n \bar{n}-\bar{n} n)=1 / 2\left(1 / 2\left(\gamma_{0}+\gamma_{1}\right)\left(\gamma_{0}-\gamma_{1}\right)-1 / 2\left(\gamma_{0}-\gamma_{1}\right)\left(\gamma_{0}+\gamma_{1}\right)\right)=1 / 4\left(4 \gamma_{1} \gamma_{0}\right)=\gamma_{1} \gamma_{0}=\mathcal{B}$ ．
（C）Jens Erfurt Andresen，M．Sc．Physics，Denmark
N－13：978－8797246931
For quotation reference use：ISBN－13：978－8797246931
and still for the basis $\left\{1, \gamma_{0}(\lambda), \gamma_{1}(\lambda), \mathcal{B}\right\}$ algebraically orthonormality is preserved as $(5.303)^{271}$
（5．321）$\quad \gamma_{0}(\lambda) \cdot \gamma_{1}(\lambda)=0, \quad$ and $\quad\left|\gamma_{0}(\lambda)\right|=\left|\gamma_{1}(\lambda)\right|=1 \quad \Longleftarrow\left|\left(\gamma_{0}(\lambda)\right)^{2}\right|=\left|\left(\gamma_{1}(\lambda)\right)^{2}\right|=1$ ．

The basis $\left\{\gamma_{0}(\lambda), \gamma_{1}(\lambda)\right\}$ is the hyperbola transformed from the null basis $\{n, \bar{n}\}$ ．The former is orthonormal but remark that its display is certainly not perpendicular nor normal in Figure 5.51 ． We display this transformation invariant structure from the a priory direction $\mathcal{B}=n \wedge \bar{n}$ basis $\{n, \bar{n}\}$ displayed as perpendicular 1 －vectors $\bar{n} \perp n$ ，but as the null－basis not orthogonal $n \cdot \bar{n}=1$ ． $\{n, \bar{n}\}$ in Figure 5.51 turned by -45° from the defined directions displayed in Figure 5.50 above：

Figure 5．51 The invariant hyperbola transformed $\gamma_{0}(\lambda)$ and $\gamma_{1}(\lambda)$ is displayed in the null basis $\{n, \bar{n}\}$ diagram．
We have chosen a perpendicular display of the null basis 1 －vectors $\{n, \bar{n}\}$ representing the founding \mathcal{B}－bivector $\mathcal{B}=n \wedge \bar{n}$ defining the direction of the \mathcal{B}－plane of this figure．The null line $n^{2}=0$ representing a possible light signal of information is displayed from left to right in the reading direction．The Clifford conjugated null line $\bar{n}^{2}=0$ is chosen displayed vertically perpendicular $\bar{n} \perp n$ ．Due to the quality of the full mixed null basis $\{1, n, \bar{n}, \mathcal{B}=n \wedge \bar{n}\}$ of the \mathcal{B}－plane（5．315） these are not orthogonal $n \cdot \bar{n}=1$ ，（5．311）but multiplied invariant constant $n \bar{n}=n \cdot \bar{n}+n \wedge \bar{n}=1+\mathcal{B}$ ，（5．314）．
The word auto refers to an autonomous entity that has a locality－now center，performed by the intersection of the locality development line direction γ_{0} and the now extension line direction γ_{1} ，with the autonomous full mixed basis $\left\{1, \gamma_{0}, \gamma_{1}, \mathcal{B}\right\}$ ， （5．308）．The invariant hyperbola transformed（5．319）$\gamma_{0}(\lambda)$ and $\gamma_{1}(\lambda)$ are displayed for the argument，e．g．$\lambda \sim 2.5$ ．
The product $\mathcal{B}=\gamma_{1}(\lambda) \gamma_{0}(\lambda)(5.320)$ and orthonormality（5．321）are invariant preserved for all values $\forall \lambda \in \mathbb{R}, \lambda \neq 0$ ．
$\lambda<0$ change orientation．$\lambda \rightarrow \infty$ gives the external fare away parallel units，and $\lambda \rightarrow 0$ is the local anti－parallel unit balance．

5．7．1．2．An Entity Seen from the External Far Distant as a Null Signal

We have seen that the unit direction \mathcal{B}－bivector is invariant preserved for all $\forall \lambda \in \mathbb{R}, \lambda \neq 0$
（5．322） $\mathcal{B}=\gamma_{1}(\lambda) \gamma_{0}(\lambda)=n \wedge \bar{n}$ ，
We now look at $\lambda \rightarrow \infty$ ，and we note it as $\lambda=\vec{\infty}$ ，and $\frac{1}{\lambda}=\tilde{0}$ ，
whereby we from（5．320）and（5．318）write

$$
\text { (5.323) } \mathcal{B}=\gamma_{1}(\vec{\infty}) \gamma_{0}(\vec{\infty})=n \wedge \bar{n}=\vec{\infty} n \wedge \tilde{0} \bar{n}
$$

In our display practice，this form will result in

$$
\text { (5.324) } \quad \gamma_{0}(\vec{\infty})=\sqrt{1 / 2}(\vec{\infty} n+\tilde{0} \bar{n}) \rightarrow \vec{\infty} n, \quad \text { and } \quad \gamma_{1}(\vec{\infty})=\sqrt{1 / 2}(\vec{\infty} n-\tilde{0} \bar{n}) \rightarrow \vec{\infty} n \text {, }
$$

convergent towards direction n for the null 1－vector $(\vec{\infty} n)^{2}=0$ ，but the impact from the
${ }^{271}$ The reader is encouraged to verify this in detail，in that，it is fundamental to how one can perceive the physical world． © Jens Erfurt Andresen，M．Sc．NBI－UCPH，$-211-\quad$ Volume I，－Edition 2－2020－22，－Revision 6， ，
\qquad 19

