Geometric

Critique

0

Pure

Mathematical Reasoning

Editio

en

Ś

rfurt

Andr

Õ

S

N

December 2022

 $\mathbf{\nabla}$

S.

earc

5

on

the

لع

priori

of

Physics

- II. . The Geometry of Physics – 5. The Geometric Plane Concept – 5.6. The Real Matrix Representation for the Plane

(5.290)
$$\begin{array}{rcl} G &= g_{11}P_{+} + g_{12}\sigma_{1}P_{-} + g_{21}\sigma_{1}P_{+} + g_{22}P_{-} \\ &= \frac{1}{2}(g_{11} + g_{22}) + \frac{1}{2}(g_{12} + g_{21})\sigma_{1} + \frac{1}{2}(g_{11} - g_{22})\sigma_{2} + \frac{1}{2}(g_{12} - g_{21})\sigma_{2}\sigma_{1}, \\ &\text{and its } \sigma_{1} \text{-conjugation} \end{array}$$

$$G^{\sigma_1} = g_{11}P_- + g_{12}\sigma_1P_+ + g_{21}\sigma_1P_- + g_{22}P_+$$

= $\frac{1}{2}(g_{11}+g_{22}) + \frac{1}{2}(g_{12}+g_{21})\sigma_1 - \frac{1}{2}(g_{11}-g_{22})\sigma_2 - \frac{1}{2}(g_{12}-g_{21})\sigma_2\sigma_1$

Then we have the form

(5.292)
$$G = \alpha 1 + \nu_1 \sigma_1 + \nu_2 \sigma_2 + \beta \sigma_2 \sigma_1$$
 and $G^{\sigma_1} = \alpha 1 + \nu_1 \sigma_1 - \nu_2 \sigma_2 - \beta \sigma_2 \sigma_1$.

5.6.1.4. An Example of a Matrix in $\mathcal{G}_2(\mathbb{R})$

A simple example is the special orthogonal rotation group SO(2) of real 2×2 matrices of the type

(5.293)
$$\begin{bmatrix} \cos\phi & -\sin\phi\\ \sin\phi & \cos\phi \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12}\\ g_{21} & g_{22} \end{bmatrix}, \qquad \sim \begin{bmatrix} e^{i\phi} \end{bmatrix}$$

We see that anti-symmetry cancel when $(g_{12}+g_{21})=0$ and $(g_{11}-g_{22})=0$, further

(5.294)
$$\frac{1}{2}(g_{11}+g_{22}) = \alpha = \cos\phi$$
 and $\frac{1}{2}(g_{12}-g_{21}) = \beta = \sin\phi$.

In this way, we get the 1-rotor form as (5.83) for a rotation

(5.295)
$$G_{\text{rotor}} = U_{\phi} = \cos \phi + \sigma_2 \sigma_1 \sin \phi = e^{\sigma_2 \sigma_1 \phi}$$

and

(5.29

Kindle and PDF-file: ISBN-13: 978-8797

(5.291)

6)
$$G_{rotor}^{\sigma_1} = U_{\phi}^{\dagger} = \cos \phi - \sigma_2 \sigma_1 \sin \phi = e^{-\sigma_2 \sigma_3}$$

This of course can be dilated by a factor ρ to a 1-spinor in the plane.

When we have $v_1 = \frac{1}{2}(g_{12}+g_{21}) \neq 0$ and $v_2 = \frac{1}{2}(g_{11}-g_{22}) \neq 0$, there is also involved some extension translation variation $\mathbf{t} = \nu_1 \boldsymbol{\sigma}_1 + \nu_2 \boldsymbol{\sigma}_2 \in \mathcal{G}_2(\mathbb{R})$ along the plane supported by $\sigma_2 \sigma_1 \in \mathcal{G}_2(\mathbb{R})$

remember the unitarity (5.85) $U_{\theta}^{\dagger}U_{\theta} = U_{\theta}U_{\theta}^{\dagger} = 1$ for the 1-rotor in the geometric algebraic plane. For the real SO(2) matrix, we have the transposed

 $\begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} g_{11} & g_{21} \\ g_{12} & g_{22} \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix}$ (5.297)

The product of these two (5.297) and (5.293)

$$(5.298) \qquad \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} g_{11} & g_{21} \\ g_{12} & g_{22} \end{bmatrix} = \begin{bmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} = \cos^{2}\phi + \sin^{2}\phi = 1$$

Something similar for the determinant of (5.293) due to the anti-symmetry

5.299)
$$\begin{vmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{vmatrix} = \cos^2 \phi + \sin^2 \phi =$$

We say that the rotation matrix (5.293) is unitary.

Here we will not go further with the matrix formalism for the plane idea.

- 3./.1	. Plane Geometric Clifford Alger
5.7. P	Plane Concept Idea of a First, a natural 1-vector obj the intuition to indicate a n The fundamental idempote form $\langle A \rangle_0 + \langle A \rangle_1$ cannot be To remedy this we will ma
5.7.1.	Plane Geometric Clifford
	Besides the Euclidean plan
	For this, we invent an exten
	first grade quality (pqg-1)
	We demand a positive sign
(5.300)	$\gamma_0^2 = +1,$
	Conversely to this creative
	unit 1-vectors γ_k for each α
	For these <i>directions</i> , we de
(5.301)	$\gamma_k^2 = -1$, for $k = 1, 2, 3$
	The purpose of this is, that
	development is in balance
(5.302)	$v_0^2 + v_k^2 = 0$.

For each k the basis set $\{\gamma_0, \gamma_k\}$ is an orthonormal basis

(5.303)
$$\gamma_0 \cdot \gamma_k = 0$$
 and $|\gamma_0| = |\gamma_k| = 1$,
for an abstract plane concept, we call it a *B*-plane,²⁶ that has Clifford algebra $\mathcal{G}_{1,1}(\mathbb{R})$, signatures $(+, -)$

From this abstraction of this 1-vector basis $\{\gamma_0, \gamma_1\}$ we form a mix of two new units

(5.304)
$$1 \coloneqq \gamma_0 \gamma_0 = \gamma_0^2 = +1$$
, the real scalar unit.
(5.305) $\mathcal{B} \coloneqq \gamma_1 \gamma_0 = \gamma_1 \wedge \gamma_0$, the \mathcal{B} -plane unit pseu

(5.306)
$$\overline{\mathcal{B}} = \widetilde{\mathcal{B}} = -\mathcal{B} = \gamma_0 \gamma_1 = \gamma_0 \Lambda \gamma_1$$
, in that

 $\gamma_1 \wedge \gamma_0 = -\gamma_0 \wedge \gamma_1$ For the signature square of this \mathcal{B} -plane pseudoscalar \mathcal{B} -bivector unit (5.305) we have

(5.307)
$$\mathcal{B}^2 = 1 \qquad = \gamma_1 \gamma_0 \gamma_1 \gamma_0 = -\gamma_1 \gamma_1 \gamma_0 \gamma_0 = 1$$

The geometric substance structure of the B-bivector direction plane is displayed in Figure 5.49. From the defining basis $\{\gamma_0, \gamma_1\}$, we form the mixed basis $\{1, \mathcal{B}\}$, a scalar and a pseudoscalar unit. This we combine to a full mixed basis for the <u>Minkowski \mathcal{B} -plane algebra</u> $\mathcal{G}_{1,1}(\mathbb{R})$

$$(5.308) \qquad \{1, \gamma_0, \gamma_1, \mathcal{B} \coloneqq \gamma_1 \gamma_0\}$$

The action of the \mathcal{B} multiplication operations give the exchange properties

(5.309)
$$\begin{array}{c} \mathcal{B} \gamma_0 = \gamma_1, \qquad \mathcal{B} \gamma_1 = \gamma_0, \qquad \mathcal{B}^2 = 1, \\ \gamma_0 \mathcal{B} = -\gamma_1, \qquad \gamma_1 \mathcal{B} = -\gamma_0. \qquad 1 \in \mathbb{R}, \text{ is} \end{array}$$

⁶⁸ This *primary quality of first grade* as a *direction* towards the future has no Descartes extension. It is a *quality* of counting times of occurrence in a process of development; one count is the unit 1-vector γ_0 , with $\gamma_0^2 = 1$ for FORWARD. We use $\tau \gamma_0, \tau \in \mathbb{R}$. In a tradition of classical mechanics, this count is often interpreted as a continuous floating river of time. (a mysterious concept.) ²⁶⁹ The name \mathcal{B} -plane is used instead of the obvious name Minkowski-plane to prevent confusion to other conceptual interpretations.

\bigcirc	Jens Erfurt Andresen, M.Sc. NBI-UCPH,	- 209

For quotation reference use: ISBN-13: 978-8797246931

-208

Research on the a priori of Physics

Copyrighted material from hardback: ISBN-13: 978-8797246931, paperback: ISBN-13: 978-8797246948,

ra with Minkowski Signature for Measure Information – 5.6.1.4 An Example of a

Non-Euclidean Clifford Algebra

ject **u** or $\mathbf{p} = \lambda_1 \mathbf{u}$ can be drawn on a surface (paper) as an arrow for atural *direction* **u** with extension magnitude $\mathbf{u}^2 = 1$ or $|\mathbf{p}| = |\lambda_1| \ge 0$. ent multivector $\frac{1}{2}(1 \pm \mathbf{u})$ or the paravector $p = \lambda_0 + \mathbf{p}$ of the grade e drawn direct for the intuition because the scalar part has no extension. ke use of the Minkowski space concept, inspired by [16], [17], [6].

Algebra with Minkowski Signature for Measure Information

he concept $\mathcal{G}_{2,0}$ expressed in (5.198), we make a non-Euclidean plane $\mathcal{G}_{1,1}$ rnal unit 1-vector γ_0 for the information development *direction*, as a with a positive causal orientation towards the *future*.²⁶⁸ nature Clifford metric (+) for this causal direction

Figure 5.49 The <u>B-bivector</u> $\vec{B} \coloneqq \gamma_1 \gamma_0$, (k=1) forming a <u>*B*-plane</u> from the 1-vectors γ_0 for <u>development</u> with positive signature $\gamma_0^2 = 1$, and for extension γ_1 with antagonist signature $\gamma_1^2 = -1$. Forming any unit \mathcal{B} -bivector amoeba $\mathcal{B} = \mathcal{B}$, in \mathcal{B} -plane, with signature $\mathcal{B}^2 = 1$. This intuit display *object* is an abstraction of measure substance of information about the extension

doscalar \mathcal{B} -bivector, with the reversion

s the neutral multiplication identity.