 - II. . The Geometry of Physics - 5. The Geometric Plane Concept - 5.6. The Real Matrix Representation for the Plane

$$
\begin{aligned}
& \text { (5.290) } \begin{aligned}
G \quad & =g_{11} P_{+}+g_{12} \boldsymbol{\sigma}_{1} P_{-}+g_{21} \boldsymbol{\sigma}_{1} P_{+}+g_{22} P_{-} \\
& =1 / 2\left(g_{11}+g_{22}\right)+1 / 2\left(g_{12}+g_{21}\right) \sigma_{1}+1 / 2\left(g_{11}-g_{22}\right) \sigma_{2}+1 / 2\left(g_{12}-g_{21}\right) \sigma_{2} \boldsymbol{\sigma}_{1},
\end{aligned} \\
& \text { and its } \boldsymbol{\sigma}_{1} \text {-conjugation } \\
& (5.291) \quad \begin{aligned}
G^{\boldsymbol{\sigma}_{1}} & =g_{11} P_{-}+g_{12} \boldsymbol{\sigma}_{1} P_{+}+g_{21} \boldsymbol{\sigma}_{1} P_{-}+g_{22} P_{+} \\
& =1 / 2\left(g_{11}+g_{22}\right)+1 / 2\left(g_{12}+g_{21}\right) \boldsymbol{\sigma}_{1}-1 / 2\left(g_{11}-g_{22}\right) \boldsymbol{\sigma}_{2}-1 / 2\left(g_{12}-g_{21}\right) \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1} .
\end{aligned} \\
& \text { Then we have the form } \\
& (5.292) \quad G=\alpha 1+v_{1} \boldsymbol{\sigma}_{1}+v_{2} \boldsymbol{\sigma}_{2}+\beta \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1} \quad \text { and } \quad G^{\boldsymbol{\sigma}_{1}}=\alpha 1+v_{1} \sigma_{1}-v_{2} \boldsymbol{\sigma}_{2}-\beta \sigma_{2} \boldsymbol{\sigma}_{1} .
\end{aligned}
$$

5.6.1.4. An Example of a Matrix in $\mathcal{G}_{2}(\mathbb{R})$

A simple example is the special orthogonal rotation group $S O(2)$ of real 2×2 matrices of the type
(5.293) $\quad\left[\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right]=\left[\begin{array}{ll}g_{11} & g_{12} \\ g_{21} & g_{22}\end{array}\right], \quad \sim\left[e^{i \phi}\right]$

We see that anti-symmetry cancel when $\left(g_{12}+g_{21}\right)=0$ and $\left(g_{11}-g_{22}\right)=0$, further
(5.294) $\quad 1 / 2\left(g_{11}+g_{22}\right)=\alpha=\cos \phi \quad$ and $\quad 1 / 2\left(g_{12}-g_{21}\right)=\beta=\sin \phi$.

In this way, we get the 1-rotor form as (5.83) for a rotation
(5.295) $\quad G_{\text {rotor }}=U_{\phi}=\cos \phi+\sigma_{2} \sigma_{1} \sin \phi=e^{\sigma_{2} \sigma_{1} \phi}$,
and
(5.296) $\quad G_{\text {rotor }}^{\boldsymbol{\sigma}_{1}}=U_{\phi}^{\dagger}=\cos \phi-\sigma_{2} \sigma_{1} \sin \phi \quad=e^{-\sigma_{2} \sigma_{1} \phi}$

This of course can be dilated by a factor ρ to a 1 -spinor in the plane.
When we have $v_{1}=1 / 2\left(g_{12}+g_{21}\right) \neq 0$ and ${ }^{2}$ or $v_{2}=1 / 2\left(g_{11}-g_{22}\right) \neq 0$, there is also involved some extension translation variation $t=v_{1} \sigma_{1}+v_{2} \sigma_{2} \in \mathcal{G}_{2}(\mathbb{R})$ along the plane supported by
$\sigma_{2} \sigma_{1} \in \mathcal{G}_{2}(\mathbb{R})$.
remember the unitarity (5.85) $U_{\theta}^{\dagger} U_{\theta}=U_{\theta} U_{\theta}^{\dagger}=1$ for the 1-rotor in the geometric algebraic plane.
For the real $S O$ (2) matrix, we have the transposed
(5.297) $\quad\left[\begin{array}{ll}g_{11} & g_{12} \\ g_{21} & g_{22}\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ll}g_{11} & g_{21} \\ g_{12} & g_{22}\end{array}\right]=\left[\begin{array}{rr}\cos \phi & \sin \phi \\ -\sin \phi & \cos \phi\end{array}\right]$
$=\left[U_{\theta}^{\dagger}\right]$
The product of these two (5.297) and (5.293)
(5.298) $\quad\left[\begin{array}{ll}g_{11} & g_{12} \\ g_{21} & g_{22}\end{array}\right]^{\mathrm{T}}\left[\begin{array}{ll}g_{11} & g_{21} \\ g_{12} & g_{22}\end{array}\right]=\left[\begin{array}{rr}\cos \phi & \sin \phi \\ -\sin \phi & \cos \phi\end{array}\right]\left[\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right]=\cos ^{2} \phi+\sin ^{2} \phi=1$

Something similar for the determinant of (5.293) due to the anti-symmetry
$\left|\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right|=\cos ^{2} \phi+\sin ^{2} \phi=1$
We say that the rotation matrix (5.293) is unitary
Here we will not go further with the matrix formalism for the plane idea.

5.7. Plane Concept Idea of a Non-Euclidean Clifford Algebra

First, a natural 1 -vector object u or $\mathbf{p}=\lambda_{1} u$ can be drawn on a surface (paper) as an arrow for the intuition to indicate a natural direction u with extension magnitude $u^{2}=1$ or $|p|=\left|\lambda_{1}\right| \geq 0$ The fundamental idempotent multivector $1 / 2(1 \pm \mathrm{u})$ or the paravector $\mathcal{P}=\lambda_{0}+\mathrm{p}$ of the grade form $\langle A\rangle_{0}+\langle A\rangle_{1}$ cannot be drawn direct for the intuition because the scalar part has no extension. To remedy this we will make use of the Minkowski space concept, inspired by [16], [17], [6].
5.7.1. Plane Geometric Clifford Algebra with Minkowski Signature for Measure Information

Besides the Euclidean plane concept $\mathcal{G}_{2,0}$ expressed in (5.198), we make a non-Euclidean plane $\mathcal{G}_{1,1}$ For this, we invent an external unit 1-vector γ_{0} for the information development direction, as a
first grade quality (pqg-1) with a positive causal orientation towards the future. ${ }^{268}$
We demand a positive signature Clifford metric $(+)$ for this causal direction

$$
\gamma_{0}^{2}=+1
$$

$$
\text { and } \widetilde{\gamma_{0}}=\gamma_{0}=\overline{\gamma_{0}}=\gamma_{0}
$$

Conversely to this creative information direction γ_{0}, we invent unit 1 -vectors γ_{k} for each one Descartes extension pqg-1 directions. For these directions, we demand a negative signature (-)
$\gamma_{k}^{2}=-1$, for $k=1,2,3$, and $\widetilde{\gamma_{k}}=\gamma_{k}$, but $\overline{\gamma_{k}}=-\gamma_{k}$. The purpose of this is, that the quadratic norm for information development is in balance with the quadratic norm for the extension

For each k the basis set $\left\{\gamma_{0}, \gamma_{k}\right\}$ is an orthonormal basis

$$
\gamma_{0} \cdot \gamma_{k}=0 \quad \text { and } \quad\left|\gamma_{0}\right|=\left|\gamma_{k}\right|=1
$$

for an abstract plane concept, we call it a \mathcal{B}-plane, ${ }^{269}$ that has Clifford algebra $\mathcal{G}_{1,1}(\mathbb{R})$, signatures $(+,-)$.
From this abstraction of this 1-vector basis $\left\{\gamma_{0}, \gamma_{1}\right\}$ we form a mix of two new units
(5.304)
$1:=\gamma_{0} \gamma_{0}=\gamma_{0}^{2}=+1, \quad$ the real scalar unit.
Figure 5.49 The $\underline{\mathcal{B} \text {-bivector }} \begin{aligned} \text { Past } \\ B\end{aligned}$ a $\mathcal{\mathcal { B }}$-plane from the 1 -vectors γ_{0} for development with positive signature $\gamma_{0}^{2}=1$, and for extension γ_{1} with antagonist signature $\gamma_{1}{ }^{2}=-1$. Forming any unit \mathcal{B}-bivector amoeba $\mathcal{B}=\mathcal{B}$, in \mathcal{B}-plane, with signature $\mathcal{B}^{2}=1$. This intuit display object is an abstraction of measure substance of information about the extension
(5.305) $\quad \mathcal{B}:=\gamma_{1} \gamma_{0}=\gamma_{1} \wedge \gamma_{0}, \quad$ the \mathcal{B}-plane unit pseudoscalar \mathcal{B}-bivector, with the reversion
$\overline{\mathcal{B}}=\widetilde{\mathcal{B}}=-\mathcal{B}=\gamma_{0} \gamma_{1}=\gamma_{0} \wedge \gamma_{1}$ in that $\gamma_{1} \wedge \gamma_{0}=-\gamma_{0} \wedge \gamma_{1}$
For the signature square of this \mathcal{B}-plane pseudoscalar \mathcal{B}-bivector unit (5.305) we have
$\mathcal{B}^{2}=$

$$
=\gamma_{1} \gamma_{0} \gamma_{1} \gamma_{0}=-\gamma_{1} \gamma_{1} \gamma_{0} \gamma_{0}=1
$$

The geometric substance structure of the \mathcal{B}-bivector direction plane is displayed in Figure 5.49. From the defining basis $\left\{\gamma_{0}, \gamma_{1}\right\}$, we form the mixed basis $\{1, \mathcal{B}\}$, a scalar and a pseudoscalar unit. This we combine to a full mixed basis for the Minkowski \mathcal{B}-plane algebra $\mathcal{G}_{1,1}(\mathbb{R})$

$$
\left\{1, \gamma_{0}, \gamma_{1}, \mathcal{B}:=\gamma_{1} \gamma_{0}\right\} .
$$

The action of the \mathcal{B} multiplication operations give the exchange properties

$$
\begin{array}{llrl}
\mathcal{B} \gamma_{0}=\gamma_{1}, & \mathcal{B} \gamma_{1}=\gamma_{0}, & \mathcal{B}^{2}=1, \\
\gamma_{0} \mathcal{B}=-\gamma_{1}, & \gamma_{1} \mathcal{B}=-\gamma_{0} . & 1 \in \mathbb{R}, & \text { is the neutral multiplication identity. }
\end{array}
$$

${ }^{268}$ This primary quality of first grade as a direction towards the future has no Descartes extension. It is a quality of counting times of occurrence in a process of development; one count is the unit 1 -vector γ_{0}, with $\gamma_{0}^{2}=1$ for FORWARD. We use $\tau \gamma_{0}, \tau \in \mathbb{R}$. In a tradition of classical mechanics, this count is often interpreted as a continuous floating river of time. (a mysterious concept.) ${ }^{269}$ The name \mathcal{B}-plane is used instead of the obvious name Minkowski-plane to prevent confusion to other conceptual interpretations. (C) Jens Erfurt Andresen, M.Sc. NBI-UCPH $\quad-209{ }_{-}$Volume I, - Edition 2-2020-22, - Revision 6, December 2022

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

