Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

5.6.1.3. The Matrices of the Geometric Algebra $\mathcal{G}_{2}(\mathbb{R})$

How can matrices represent the direction concept just as geometric multivectors do? We recall (5.198) the plane space concept supported by the mixed 2^{2}-dimensional standard basis

$\left\{1, \boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}\right\}$

($i:=\sigma_{2} \sigma_{1}$)
The general form of a plane geometric multivector (5.197) is written
(5.272) $\quad G=\alpha 1+v_{1} \boldsymbol{\sigma}_{1}+v_{2} \boldsymbol{\sigma}_{2}+\beta \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1} \quad \in \mathcal{G}_{2}(\mathbb{R}), \quad$ where $\alpha, v_{1}, v_{2}, \beta \in \mathbb{R}$.

The 1 -vectors $v_{k} \boldsymbol{\sigma}_{k}$ mutual anticommute, as with the pseudoscalar bivector $\beta \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$ too, but all scalars commute with all elements. We prerequisite $\boldsymbol{\sigma}_{1}^{2}=\boldsymbol{\sigma}_{2}^{2}=1$ and $\boldsymbol{\sigma}_{2} \cdot \boldsymbol{\sigma}_{1}=0$.
As a complement to the cartesian form ${ }^{267} \mathbf{x}=v_{1} \boldsymbol{\sigma}_{1}+v_{2} \boldsymbol{\sigma}_{2}$ supported by $\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}\right\}$ we introduce from the paravector idea the mixed 2-tuple matrices as column or row editions (5.273) $\quad\binom{1}{\boldsymbol{\sigma}_{1}}$ or $\left(\begin{array}{ll}1 & \boldsymbol{\sigma}_{1}\end{array}\right), \quad$ together with $\quad\binom{1}{\boldsymbol{\sigma}_{2}}$ or $\left(\begin{array}{ll}1 & \boldsymbol{\sigma}_{2}\end{array}\right)$.

We take the first two 2-tuple forms as our master and ignore implicit the last two, and Instead, use the idempotent projection form (5.235) for this projected direction
(5.274) $\quad P_{+}=1 / 2\left(1+\boldsymbol{\sigma}_{2}\right) \quad$ and its Clifford conjugated $\quad \widetilde{P_{+}}=\bar{P}_{+}=P_{-}=1 / 2\left(1-\boldsymbol{\sigma}_{2}\right)$. These two conjugated are mutual annihilating $P_{+} P_{-}=0$. (Refer to (5.247) and (5.223)) Inspired by the reflection in a direction 1 -vector $\S 5.4 .2 .1$ we will as in [14] p. 79 let
P_{+}act on the row form $\left(1 \boldsymbol{\sigma}_{1}\right)$ and then let $\left(1 \boldsymbol{\sigma}_{1}\right)^{\mathrm{T}}$ left act on this result in a canonical way
(5.275) $\quad\binom{1}{\boldsymbol{\sigma}_{1}} P_{+}\left(\begin{array}{ll}1 & \boldsymbol{\sigma}_{1}\end{array}\right)=\binom{P_{+}}{\boldsymbol{\sigma}_{1} P_{+}}\left(\begin{array}{ll}1 & \boldsymbol{\sigma}_{1}\end{array}\right)=\left[\begin{array}{rr}P_{+} & P_{+} \boldsymbol{\sigma}_{1} \\ \boldsymbol{\sigma}_{1} P_{+} & \boldsymbol{\sigma}_{1} P_{+} \boldsymbol{\sigma}_{1}\end{array}\right]=\left[\begin{array}{rr}P_{+} & \boldsymbol{\sigma}_{1} P_{-} \\ \boldsymbol{\sigma}_{1} P_{+} & P_{-}\end{array}\right]$,
to get a 2×2 matrix form for a natural plane geometric basis, we as Sobczyk call a spectral basis. This $\mathcal{G}_{2}(\mathbb{R})$ plane matrix basis represents the support of $4=2^{2}$-dimensions of real number similar to the geometric algebraic form (5.272), but it will have different properties that we certainly not called coordinates but matrix elements, e.g. $g_{11}, g_{12}, g_{21}, g_{22} \in \mathbb{R}$. From this idea, we will map the geometric multivector G (5.272) to a 2×2 real matrix

This result, we get for each place in the matrix by use of the form and the fact that

$$
P_{+} \sigma_{1} P_{+}=0, \quad P_{+} \sigma_{2} \sigma_{1} P_{+}=0, \quad \text { and } \quad P_{+} \sigma_{2}=P_{+} 1
$$

Then

$$
\begin{array}{rll}
P_{+} \overparen{G} P_{+} & =P_{+}\left(\alpha+v_{1} \boldsymbol{\sigma}_{1}+v_{2} \boldsymbol{\sigma}_{2}+\beta \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}\right) P_{+} & =P_{+}\left(\alpha+v_{2}\right) \\
P_{+} \overparen{G \boldsymbol{\sigma}_{1}} P_{+} & =P_{+}\left(\alpha+v_{1} \boldsymbol{\sigma}_{1}+v_{2} \boldsymbol{\sigma}_{2}+\beta \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}\right) \boldsymbol{\sigma}_{1} P_{+} & =P_{+}\left(v_{1}+\beta\right) \\
P_{+} \overbrace{\boldsymbol{\sigma}} G P_{+} & =P_{+} \boldsymbol{\sigma}_{1}\left(\alpha+v_{1} \boldsymbol{\sigma}_{1}+v_{2} \sigma_{2}+\beta \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}\right) P_{+} & =P_{+}\left(v_{1}-\beta\right) \\
P_{+} \overbrace{\boldsymbol{\sigma}_{1} G \boldsymbol{\sigma}_{1}} P_{+} & =P_{+} \boldsymbol{\sigma}_{1}\left(\alpha+v_{1} \boldsymbol{\sigma}_{1}+v_{2} \sigma_{2}+\beta \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}\right) \boldsymbol{\sigma}_{1} P_{+} & =P_{+}\left(\alpha-v_{2}\right)
\end{array}
$$

A plane geometric algebraic element $G \in \mathcal{G}_{2}(\mathbb{R})(5.272)$ is by the projection spectral basis (5.275) mapped to a real matrix as (5.276)

$$
G \rightarrow[G]=\left[\begin{array}{ll}
\alpha+v_{2} & v_{1}+\beta \\
v_{1}-\beta & \alpha-v_{2}
\end{array}\right]
$$

How will this look when we do not specify the coefficients in (5.272) and just want to find an expression from an abstract multivector $G \in \mathcal{G}_{2}(\mathbb{R})$ for a matrix $[G]$ representing the same plane quality of our physical entity? First, we do not know the expansion (5.272), then:
For the projector P_{+}for the form expressed in (5.277) will be stuck in the first line of (5.279) at

$$
G=\left(\begin{array}{ll}
1 & \sigma_{1}
\end{array}\right) P_{+}[G]\binom{1}{\sigma_{1}}=\left(\begin{array}{ll}
1 & \boldsymbol{\sigma}_{1}
\end{array}\right) P_{+}\left[\begin{array}{rr}
G & G \sigma_{1} \\
\boldsymbol{\sigma}_{1} G & \sigma_{1} G \boldsymbol{\sigma}_{1}
\end{array}\right] P_{+}\binom{1}{\boldsymbol{\sigma}_{1}} .
$$

From this, we extract that
(5.284) $\quad P_{+}[G]=\quad P_{+}\left[\begin{array}{rr}G & G \sigma_{1} \\ \sigma_{1} G & \sigma_{1} G \sigma_{1}\end{array}\right] P_{+}$

But we can as well use the projection P_{-}in our deduction. The change is that we go into a
conjugated picture by an inner automorphism. We as Sobczyk [14], [15] invent a $\boldsymbol{\sigma}_{1}$-conjugation

$$
G^{\sigma_{1}}=\sigma_{1} G \sigma_{1} \quad \Rightarrow \quad P_{+}^{\sigma_{1}}=\sigma_{1} P_{+} \sigma_{1}=P_{-}
$$

By this, we transform (5.284) to
(5.286) $\quad P_{-}\left[G^{\sigma_{1}}\right]=P_{-}\left[\begin{array}{rr}\sigma_{1} G \sigma_{1} & \sigma_{1} G \\ G \sigma_{1} & G\end{array}\right] P_{-}$

We seek the same real matrix of the form (5.276), therefore we presume $\left[G^{\sigma_{1}}\right]=[G]=\left[\begin{array}{ll}g_{11} & g_{12} \\ g_{21} & g_{22}\end{array}\right]$, with $g_{k j} \in \mathbb{R}$ for the real matrix $[G]$. By the unitarity (5.278) $P_{+}+P_{-}=1$ we form the sum

$$
P_{+}[G]+P_{-}\left[G^{\sigma_{1}}\right]=\left(P_{+}+P_{-}\right)[G]=[G] .
$$

This sum of (5.284) and (5.286) then give us the desired real matrix

$$
\text { (5.288) } \quad[G]=P_{+}\left[\begin{array}{rr}
G & G \sigma_{1} \\
\sigma_{1} G & \sigma_{1} G \sigma_{1}
\end{array}\right] P_{+} \quad+\quad P_{-}\left[\begin{array}{rr}
\sigma_{1} G \sigma_{1} & \sigma_{1} G \\
G \sigma_{1} & G
\end{array}\right] P_{-}
$$

This is the map of the unspecified abstract geometric algebraic multivector $G \in \mathcal{G}_{2}(\mathbb{R})$ supported from the spectral basis (5.275), given from our intuitive object standard basis (5.271), using the mutual annihilating projection operators (5.274)

$$
\left[\begin{array}{rr}
P_{+} & \sigma_{1} P_{-} \\
\sigma_{1} P_{+} & P_{-}
\end{array}\right], \quad\left\{1, \sigma_{1}, \sigma_{2}, \sigma_{2} \sigma_{1}\right\}, \quad\binom{1}{\sigma_{1}},
$$

The real matrix form $[G]=\left[\begin{array}{ll}g_{11} & g_{12} \\ g_{21} & g_{22}\end{array}\right]$ we cannot intuit as a geometric object
on a natural surface in space, but we write it out as

C Jens Erfurt Andresen, M.Sc. NBI-UCPH
${ }^{267}$ Here we use the scale coefficients v_{k} for the line extension variation $v_{k} \boldsymbol{\sigma}_{k}$ instead of $x_{k} \boldsymbol{\sigma}_{k}$ for the position coordinate x_{k} © Jens Erfurt Andresen, M.Sc. Physics, Denmark -206- Research on the a priori of Physics

For quotation reference use: ISBN-13: 978-8797246931

