Geometric

Critique

of Pure

Mathematical Reasoning

Edition

 \bigcirc

N

020-22

lens

Andres

en

© Jens Erfurt Andresen, M.Sc. NBI-UCPH

と

esearch

on

th

 $\overline{\mathbf{O}}$

2

priori

of.

Physics

- II. . The Geometry of Physics – 5. The Geometric Plane Concept – 5.5. Inherit Quantities of the Algebra for the Euclidean

From all this we achieve the greatral projective properties

	From an unis, we achieve the spectral projective properties
(5.248)	$pP_{u} = P_{u}p = \lambda_{+}P_{u}$, and $p\overline{P}_{u} = \overline{P}_{u}p = \lambda_{-}\overline{P}_{u}$, together with
(5.249)	$\overline{\mathcal{P}}P_{\mathbf{u}} = P_{\mathbf{u}}\overline{\mathcal{P}} = \lambda_{-}P_{\mathbf{u}}, \text{and} \overline{\mathcal{P}}\overline{P}_{\mathbf{u}} = \overline{P}_{\mathbf{u}}\overline{\mathcal{P}} = \lambda_{+}\overline{P}_{\mathbf{u}}.$
(5.250)	$\lambda_+\lambda = (\lambda_0 + \lambda_u)(\lambda_0 - \lambda_u) = \lambda_0^2 - \lambda_u^2 \in \mathbb{R}$, is a scalar given from the components (5.245).
	The product of two paravectors $p = \lambda_+ P_u + \lambda \overline{P}_u$ and $p' = \lambda'_+ P_u + \lambda' \overline{P}_u$ is
(5.251)	$\mathcal{P}\mathcal{P}' = \left(\lambda_+ P_{\mathbf{u}} + \lambda \overline{P}_{\mathbf{u}}\right) \left(\lambda'_+ P_{\mathbf{u}} + \lambda' \overline{P}_{\mathbf{u}}\right) = \left(\lambda_+ \lambda'_+\right) P_{\mathbf{u}} + \left(\lambda \lambda'\right) \overline{P}_{\mathbf{u}}.$
	The paravector auto-product square is
(5.252)	$\mathscr{PP} = (\lambda_+ P_{\mathbf{u}} + \lambda \overline{P}_{\mathbf{u}}) (\lambda_+ P_{\mathbf{u}} + \lambda \overline{P}_{\mathbf{u}}) = \lambda_+^2 P_{\mathbf{u}} + \lambda^2 \overline{P}_{\mathbf{u}}.$
	What about the observable magnitude of a paravector?
	We evaluate the basis auto product square $P_u^2 = P_u$ it is certainly not a scalar for the magnitude. Instead, we will use the Clifford conjugation quadratic form by using the scalar (5.250)
(5.253)	$\mathcal{P}\overline{\mathcal{P}} = (\lambda_{+}P_{\mathbf{u}} + \lambda_{-}\overline{P}_{\mathbf{u}})(\lambda_{+}\overline{P}_{\mathbf{u}} + \lambda_{-}P_{\mathbf{u}}) = \lambda_{+}\lambda_{-}(P_{\mathbf{u}} + \overline{P}_{\mathbf{u}}) = \lambda_{+}\lambda_{-} = \lambda_{0}^{2} - \lambda_{\mathbf{u}}^{2} \in \mathbb{R}.$
	This is in full agreement with the product of (5.240) and (5.241) in the definition basis $\{1, u\}$
(5.254)	$\mathcal{p}\overline{\mathcal{p}} = \overline{\mathcal{p}}\mathcal{p} = \lambda_0^2 - \mathbf{p}^2 = (\lambda_0 + \mathbf{p})(\lambda_0 - \mathbf{p}) = (\lambda_0 1 + \lambda_\mathbf{u}\mathbf{u})(\lambda_0 1 - \lambda_\mathbf{u}\mathbf{u}) = \lambda_0^2 - \lambda_\mathbf{u}^2 \in \mathbb{R},$
	positive, null, or negative, that yields the observable pure magnitude for the paravector
(5.255)	$ \mathcal{P} _0 = \overline{\mathcal{P}} _0 = \sqrt{ \lambda_0^2 - \lambda_u^2 } \ge 0.$
	From this, we conclude that the projection basis $\{P_u, P_u\}$ consists of <i>null</i> basis vectors
(5.256)	$P_{\mathbf{u}}P_{\mathbf{u}} = 0 \Longrightarrow P_{\mathbf{u}} _0 = P_{\mathbf{u}} _0 = 0$
	This (5.254) indicates a Clifford algebra structure with a Minkowski signature metric. – To immediately continue with Minkowski metric jump to section 5.7.
5.5.4.4	. Non Measurable Fictive Magnitude of Paravectors
	When we follow the definition of multivector magnitude given by Hestenes [10]p.46 as (5.166) -
(5.257)	(5.167) for the paravector $p = \lambda_0 1 + \lambda_u u = \langle p \rangle_0 + \langle p \rangle_1 = \langle \lambda_0 1 \rangle_0 + \langle \lambda_u u \rangle_1$ we have
(3.237)	$ \mathcal{P} = (\lambda_0 1/_0) + (\lambda_u \mathbf{u}/_1) = \lambda_0 + \lambda_u.$
	Hestenes as in [13] n 13(1.51) made the simple assumption that $\langle A^{\dagger}A \rangle > 0$ (5.257)
	The question is, will this paravector idea of magnitude be measurable in physics?
	When it comes to Clifford conjugation $\langle \tilde{A} \rangle$ and special parity inversion $\langle \bar{A} \rangle$ we have the
	simple reality that for 1-vector $(\bar{\mathbf{n}}\mathbf{n})_{1} = - \mathbf{n} ^2$ and for the unit $(\bar{\mathbf{n}}\mathbf{n})_{2} = \bar{\mathbf{n}}\mathbf{n} = -\mathbf{n}^2 = -1$ but
	we know that the Euclidian 1-vector has as $\mathbf{u}^2 = 1$ the magnitude $\langle \mathbf{p}\mathbf{p} \rangle^{\frac{1}{2}} = \langle \mathbf{p}^{\dagger}\mathbf{p} \rangle^{\frac{1}{2}} = \mathbf{p} = \lambda_u $,
	that is independent of the scalar <i>quality</i> λ_0 magnitude $ \lambda_0 $.
	This observable pure magnitude measure of an object 1-vector has an extension direction,
	though its founded in the idea of the formulation in (5.254)-(5.255). But here the outstanding question is what <i>direction</i> count does the pure scalar represents in physics? Will the question
	question is, what <i>unrection</i> could does the pure scalar represents in physics? Will the quantity $\sqrt{\lambda^2 + \lambda^2}$ appear in reality? It is obvious that it is not an intuitive object per se
	The simplest way is to demand the synthetic judgment $\lambda_0^2 \ge \lambda_0^2 \implies \lambda_0 \ge \mathbf{p} $
(5.258)	$ p _0^2 \to \langle p\overline{p} \rangle_0 = \lambda_0^2 - \lambda_{\mu}^2 \ge 0$
	This will be treated further below in section 5.7 and later in chapter III. 7.
	Anyway, when it comes to geometric algebraic bivectors the reversion product is positive
	$\langle \widetilde{\mathbf{B}} \mathbf{B} \rangle_0 = \langle \mathbf{B}^{\dagger} \mathbf{B} \rangle_0 = \mathbf{B}^{\dagger} \mathbf{B} \ge 0.$

with	n required quotation reference: IS
- 5.6.	1. The Fundamentals of Matrices in a Plane Algebra $G_2 - 5.6.1$
5.6.	The Real Matrix Representation for the Pla
5.6.1.	The Fundamentals of Matrices in a Plane Algebra
5.6.1.1	. Matrices for a Cartesian 1-vector Concept for a Eucli
	The orthonormal Cartesian basis set we name { σ_1 , σ_2 These objects we associate with 2-tuples first as col-
(5 259)	$\mathbf{r}_{\mathbf{c}} \leftrightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\mathbf{r}_{\mathbf{c}} \leftrightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\mathbf{r}_{\mathbf{c}} \leftrightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
(3.257)	The abstract 2-tuple basis is then with the geometric
(5.260)	$\{\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2\} \leftrightarrow \{\begin{pmatrix} 1\\ 2 \end{pmatrix}, \begin{pmatrix} 0\\ 2 \end{pmatrix}\}$ and $\{\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2\}$
	A general Cartesian 1-vectors in the plane we expres
(5.261)	$\mathbf{x} = x_1 \boldsymbol{\sigma}_1 + x_2 \boldsymbol{\sigma}_2,$ with $x_k \in \mathbb{R},$
	As 2-tuples, first as columns, ²⁶⁵ next as rows
(5.262)	$\mathbf{x} \leftrightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x^2 \end{pmatrix}$ and $\mathbf{x} \leftrightarrow$
	Then the coordinates are performed as an inner prod
(5.263)	$x_1 = \mathbf{x} \cdot \boldsymbol{\sigma}_1 = \mathbf{x} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = (x_1 \ x_2) \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $x_1 = \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}_2 \cdot \mathbf{x}_2$
	Orthonormality is expressed as
(5.264)	$\mathbf{\sigma}_2 \cdot \mathbf{\sigma}_1 = \mathbf{\sigma}_1 \cdot \mathbf{\sigma}_2 = (0 \ 1) \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = (1 \ 0) \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} =$
	From (5.261)-(5.262) we define two arbitrary 1-vect
(5.265)	$\mathbf{a} \leftrightarrow \begin{pmatrix} a^1 \\ a^2 \end{pmatrix} = a^j$ and $\mathbf{b} \leftrightarrow (b_1 \ b_2)$
	We form the product of the two matrix 2-tuples and First, the inner scalar product is the same as for the
(5.266)	$(b_1 \ b_2) \cdot \begin{pmatrix} a^1 \\ a^2 \end{pmatrix} = b_1 a^1 + b_2 a^2 = b_k a^k \in \mathbb{I}$
	But we have a different tuple epistemology than the ba or ab as above (5.56), when we form the product
(5.267)	$ \binom{a^{1}}{a^{2}}(b_{1} \ b_{2}) = \begin{bmatrix} a^{1}b_{1} & a^{1}b_{2} \\ a^{2}b_{1} & a^{2}b_{2} \end{bmatrix} = a^{j}b_{k} = \begin{bmatrix} c^{1}_{1} \\ c^{2}_{1} \end{bmatrix} $
5.6.1.	2. Examples of Matrices of Geometric Multivectors
(5.268)	In a Euclidean-Carlesian plane, we define a set of 1- $a_1 = a_1 \cdot a_2 + a_2 \cdot a_3 = a_1^k \cdot a_3 = c_1(\mathbb{R})$
(3.200)	From this, for $m \in \mathbb{N}$ we form a m-row matrix
(5.269)	$[a]_{(m)} = (a_1, a_2, \dots, a_m)$
(0.20))	From this we form its transposed m-column matrix
	(a^1)
(5.270)	$[\mathbf{a}]_{(m)}^{\mathrm{T}} = (\mathbf{a}_{1}, \mathbf{a}_{2}, \dots \mathbf{a}_{m})^{\mathrm{T}} = [\mathbf{a}]^{(m)} = \begin{pmatrix} \mathbf{a}^{2} \\ \vdots \\ \mathbf{a}^{m} \end{pmatrix}$
C 11	
Generall	y upper index x^{n} is used for <i>column</i> numbers to indicate contrav thogonal case, there is no difference $x^{k}=x_{k}$ (do not mistake k

servable pure magnitude measure of
its founded in the idea of the formula
n is, what <i>direction</i> count does the pu
$\overline{\lambda_{u}^{2}}$ appear in reality? It is obvious that
plest way is to demand the synthetic
$\rightarrow \langle \mathcal{P}\overline{\mathcal{P}} \rangle_{0} = \lambda_{0}^{2} - \lambda_{\mathbf{u}}^{2} \geq 0$
ll be treated further below in section :
when it comes to geometric algebra = $\langle \mathbf{B}^{\dagger}\mathbf{B} \rangle_0 = \mathbf{B}^{\dagger}\mathbf{B} \ge 0.$
esen, M.Sc. Physics, Denmark –

204 Research on the a priori of Physics December 2022

For quotation reference use: ISBN-13: 978-8797246931

For quotation reference use: ISBN-13: 978-879724693

© Jens Erfurt Andre

.1.2 Examples of Matrices of Geometric Multivectors

Plane Concept

ra G_2

clidean plane \mathbb{R}_1^2

 σ_2 as the *directions* in space for our plane. olumns, next as rows

(1 0), $\sigma_2 \leftrightarrow (0 1)$.

ic directions implicit hidden

- $\{(1 \ 0), (0 \ 1)\}$
- ress as (5.136)

from the perpendicular basis objects $\sigma_2 \perp \sigma_1$.

 $(x_1 \ x_2),$ where $(x_1 \ x_2)^{\mathrm{T}} = \begin{pmatrix} x^1 \\ y^2 \end{pmatrix}$. oduct²⁶⁶ of such matrix 2-tuples, row.column $x_2 = \mathbf{x} \cdot \boldsymbol{\sigma}_2 = \mathbf{x} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = (x_1 \ x_2) \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$

- = 0, and e.g. $\sigma_1^2 = (1 \ 0) \cdot {\binom{1}{0}} = 1$. ectors in the $\{\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2\}$ plane
- b_2) = b_k , for j, k = 1, 2.

d see the differences

e 1-vectors $\mathbf{b} \cdot \mathbf{a} \in \mathbb{R}$

∈ℝ.

e geometric products of these 1-vectors act of the matrix 2-tuples to a 2×2 matrix as

$$\begin{bmatrix} c^{1}_{2} \\ c^{1}_{2} \end{bmatrix} = c^{j}_{k}, \text{ for } j, k = 1, 2.$$

1-vectors

with $a_{k,j} = a_{j}^{k} \in \mathbb{R}$, k=1,2, for Cartesian plane.

$$\leftrightarrow \begin{bmatrix} a_{1}^{1} & a_{2}^{1} & \cdots & a_{m}^{1} \\ a_{1}^{2} & a_{2}^{2} & \cdots & a_{m}^{2} \end{bmatrix}.$$

$$\leftrightarrow \begin{bmatrix} a_{1}^{1} & a_{2}^{1} \\ a_{1}^{2} & a_{2}^{2} \\ \vdots & \vdots \\ a_{1}^{m} & a_{2}^{m} \end{bmatrix} \sim \begin{bmatrix} a_{1,1} & a_{2,1} \\ a_{1,2} & a_{2,2} \\ \vdots & \vdots \\ a_{1,m} & a_{2,m} \end{bmatrix}.$$

avariance opposite covariance or row numbers x_k . k in x^k for exponents). ²⁶⁶ We presume the reader is familiar with the rules of matrix multiplication. For this, I here have recalled it from [14] Chapter 4.

Edition 2 – 2020-22