

From all this, we achieve the spectral projective properties
(5.248) $\quad p P_{\mathrm{u}}=P_{\mathrm{u}} \mathcal{P}=\lambda_{+} P_{\mathrm{u}}, \quad$ and $\quad p \bar{P}_{\mathrm{u}}=\bar{P}_{\mathrm{u}} \mathcal{p}=\lambda_{-} \bar{P}_{\mathrm{u}}$, together with
(5.249) $\overline{\mathcal{D}} P_{\mathrm{u}}=P_{\mathrm{u}} \overline{\mathcal{L}}=\lambda_{-} P_{\mathrm{u}}, \quad$ and $\quad \overline{\mathcal{L}} \bar{P}_{\mathrm{u}}=\bar{P}_{\mathrm{u}} \overline{\mathcal{P}}=\lambda_{+} \bar{P}_{\mathrm{u}}$.
(5.250) $\quad \lambda_{+} \lambda_{-}=\left(\lambda_{0}+\lambda_{\mathrm{u}}\right)\left(\lambda_{0}-\lambda_{\mathrm{u}}\right)=\lambda_{0}^{2}-\lambda_{\mathrm{u}}^{2} \in \mathbb{R}, \quad$ is a scalar given from the components (5.245)

The product of two paravectors $\mathcal{p}=\lambda_{+} P_{\mathrm{u}}+\lambda_{-} \bar{P}_{\mathrm{u}}$ and $\mathfrak{p}^{\prime}=\lambda_{+}^{\prime} P_{\mathrm{u}}+\lambda_{-}^{\prime} \bar{P}_{\mathrm{u}}$ is
(5.251) $\quad \mathcal{P} \mathcal{P}^{\prime}=\left(\lambda_{+} P_{\mathrm{u}}+\lambda_{-} \bar{P}_{\mathrm{u}}\right)\left(\lambda_{+}^{\prime} P_{\mathrm{u}}+\lambda_{-}^{\prime} \bar{P}_{\mathrm{u}}\right)=\left(\lambda_{+} \lambda_{+}^{\prime}\right) P_{\mathrm{u}}+\left(\lambda_{-} \lambda_{-}^{\prime}\right) \bar{P}_{\mathrm{u}}$.

The paravector auto-product square is
(5.252) $\quad \mathcal{P} \mathcal{P}=\left(\lambda_{+} P_{\mathrm{u}}+\lambda_{-} \bar{P}_{\mathrm{u}}\right)\left(\lambda_{+} P_{\mathrm{u}}+\lambda_{-} \bar{P}_{\mathrm{u}}\right)=\lambda_{+}^{2} P_{\mathrm{u}}+\lambda_{-}^{2} \bar{P}_{\mathrm{u}}$.

What about the observable magnitude of a paravector?
We evaluate the basis auto product square $P_{\mathrm{u}}^{2}=P_{\mathrm{u}}$ it is certainly not a scalar for the magnitude. Instead, we will use the Clifford conjugation quadratic form by using the scalar (5.250)
(5.253) $\quad \mathcal{D} \overline{\mathcal{D}}=\left(\lambda_{+} P_{\mathrm{u}}+\lambda_{-} \bar{P}_{\mathrm{u}}\right)\left(\lambda_{+} \bar{P}_{\mathrm{u}}+\lambda_{-} P_{\mathrm{u}}\right)=\lambda_{+} \lambda_{-}\left(P_{\mathrm{u}}+\bar{P}_{\mathrm{u}}\right)=\lambda_{+} \lambda_{-}=\lambda_{0}^{2}-\lambda_{\mathrm{u}}^{2} \quad \in \mathbb{R}$.

This is in full agreement with the product of (5.240) and (5.241) in the definition basis $\{1, \mathrm{u}\}$
(5.254) $\overline{\mathcal{D}} \overline{\mathcal{P}}=\overline{\mathcal{D}} \mathcal{P}=\lambda_{0}^{2}-\mathrm{p}^{2}=\left(\lambda_{0}+\mathrm{p}\right)\left(\lambda_{0}-\mathrm{p}\right)=\left(\lambda_{0} 1+\lambda_{\mathrm{u}} \mathrm{u}\right)\left(\lambda_{0} 1-\lambda_{\mathrm{u}} \mathrm{u}\right)=\lambda_{0}^{2}-\lambda_{\mathrm{u}}^{2} \quad \in \mathbb{R}$,
positive, null, or negative, that yields the observable pure magnitude for the paravector $|\mathfrak{p}|_{0}=|\bar{x}|_{0}=\sqrt{\left|\lambda_{0}^{2}-\lambda_{\mathrm{u}}^{2}\right|} \geq 0$
From this, we conclude that the projection basis $\left\{P_{\mathrm{u}}, \bar{P}_{\mathrm{u}}\right\}$ consists of null basis vectors

$$
P_{\mathrm{u}} \bar{P}_{\mathrm{u}}=0 \quad \Rightarrow \quad\left|P_{\mathrm{u}}\right|_{0}=\left|\bar{P}_{\mathrm{u}}\right|_{0}=0
$$

This (5.254) indicates a Clifford algebra structure with a Minkowski signature metric. - To immediately continue with Minkowski metric jump to section 5.7.

$$
\text { and } \quad \mathbf{b} \leftrightarrow\left(b_{1} b_{2}\right)=b_{k}, \quad \text { for } j, k=1,2
$$

5.5.4.4. Non Measurable Fictive Magnitude of Paravectors

When we follow the definition of multivector magnitude given by Hestenes [10]p. 46 as (5.166)(5.167) for the paravector $p=\lambda_{0} 1+\lambda_{u} u \quad=\langle p\rangle_{0}+\langle p\rangle_{1}=\left\langle\lambda_{0} 1\right\rangle_{0}+\left\langle\lambda_{u} u\right\rangle_{1} \quad$ we have
(5.257) $\quad|p|^{2}=\left|\left\langle\lambda_{0} 1\right\rangle_{0}\right|^{2}+\left|\left\langle\lambda_{u} u\right\rangle_{1}\right|^{2}=\lambda_{0}^{2}+\lambda_{u}^{2}$.

This is a simple pure mathematic defined magnitude.
Hestenes as in [13] p.13(1.51) made the simple assumption that $\left\langle A^{\dagger} A\right\rangle_{0} \geq 0$. (5.257)
The question is, will this paravector idea of magnitude be measurable in physics?
When it comes to Clifford conjugation $\langle\widetilde{A} A\rangle_{0}$ and special parity inversion $\langle\bar{A} A\rangle_{0}$ we have the simple reality that for 1 -vector $\langle\overline{\mathrm{p}} \mathbf{p}\rangle_{0}=-|\mathrm{p}|^{2}$ and for the unit $\langle\bar{u} u\rangle_{0}=\overline{\mathrm{u}} u=-\mathbf{u}^{2}=-1$, but we know that the Euclidian 1-vector has as $\mathbf{u}^{2}=1$ the magnitude $\langle\mathbf{p}\rangle^{1 / 2}=\left\langle\mathbf{p}^{\dagger} \mathbf{p}\right\rangle^{1 / 2}=|\mathbf{p}|=\left|\lambda_{\mathrm{u}}\right|$, that is independent of the scalar quality λ_{0} magnitude $\left|\lambda_{0}\right|$

This observable pure magnitude measure of an object 1 -vector has an extension direction, though its founded in the idea of the formulation in (5.254)-(5.255). But here the outstanding question is, what direction count does the pure scalar represents in physics? Will the quantity $\sqrt{\lambda_{0}^{2}+\lambda_{\mathrm{u}}^{2}}$ appear in reality? It is obvious that it is not an intuitive object per se
The simplest way is to demand the synthetic judgment $\lambda_{0}^{2} \geq \lambda_{\mathrm{u}}^{2} \Longrightarrow\left|\lambda_{0}\right| \geq|\mathrm{p}|$

$$
|\mathfrak{p}|_{0}^{2} \rightarrow\langle\mathcal{p} \overline{\mathcal{p}}\rangle_{0}=\lambda_{0}^{2}-\lambda_{\mathrm{u}}^{2} \geq 0
$$

This will be treated further below in section 5.7 and later in chapter III. 7
Anyway, when it comes to geometric algebraic bivectors the reversion product is positive $\langle\widetilde{\mathrm{B}} \mathrm{B}\rangle_{0}=\left\langle\mathrm{B}^{\dagger} \mathrm{B}\right\rangle_{0}=\mathrm{B}^{\dagger} \mathrm{B} \geq 0$.

5.6. The Real Matrix Representation for the Plane Concept

5.6.1. The Fundamentals of Matrices in a Plane Algebra \mathcal{G}_{2}

5.6.1.1. Matrices for a Cartesian 1 -vector Concept for a Euclidean plane \mathbb{R}_{1}

The orthonormal Cartesian basis set we name $\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}\right\}$ as the directions in space for our plane
These objects we associate with 2-tuples, first as columns, next as rows
(5.259) $\quad \boldsymbol{\sigma}_{1} \leftrightarrow\binom{1}{0}, \quad \boldsymbol{\sigma}_{2} \leftrightarrow\binom{0}{1}, \quad$ and $\quad \boldsymbol{\sigma}_{1} \leftrightarrow\left(\begin{array}{ll}1 & 0\end{array}\right), \quad \boldsymbol{\sigma}_{2} \leftrightarrow\left(\begin{array}{ll}0 & 1\end{array}\right)$.

The abstract 2-tuple basis is then with the geometric directions implicit hidden
(5.260)
$\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}\right\} \leftrightarrow\left\{\binom{1}{0},\binom{0}{1}\right\} \quad$ and
$\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}\right\} \leftrightarrow\{$
$\left\{\left(\begin{array}{ll}1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1\end{array}\right)\right\}$

A general Cartesian 1-vectors in the plane we express as (5.136)
(5.261) $\mathrm{x}=x_{1} \boldsymbol{\sigma}_{1}+x_{2} \boldsymbol{\sigma}_{2}, \quad$ with $x_{k} \in \mathbb{R}, \quad$ from the perpendicular basis objects $\sigma_{2} \perp \sigma_{1}$

As 2-tuples, first as columns, ${ }^{265}$ next as rows
(5.262) $\quad \mathrm{x} \leftrightarrow\binom{x_{1}}{x_{2}}=\binom{x^{1}}{x^{2}} \quad$ and $\quad \mathrm{x} \leftrightarrow\left(\begin{array}{ll}x_{1} & x_{2}\end{array}\right), \quad$ where $\quad\left(\begin{array}{ll}x_{1} & x_{2}\end{array}\right)^{\mathrm{T}}=\binom{x^{1}}{x^{2}}$.

Then the coordinates are performed as an inner product ${ }^{266}$ of such matrix 2-tuples, row \cdot column
(5.263) $\quad x_{1}=\mathrm{x} \cdot \boldsymbol{\sigma}_{1}=\mathrm{x} \cdot\binom{1}{0}=\left(\begin{array}{ll}x_{1} & x_{2}\end{array}\right) \cdot\binom{1}{0} \quad$ and $\quad x_{2}=\mathrm{x} \cdot \boldsymbol{\sigma}_{2}=\mathrm{x} \cdot\binom{0}{1}=\left(\begin{array}{ll}x_{1} & x_{2}\end{array}\right) \cdot\binom{0}{1}$.

Orthonormality is expressed as
(5.264) $\quad \boldsymbol{\sigma}_{2} \cdot \boldsymbol{\sigma}_{1}=\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}=\left(\begin{array}{ll}0 & 1\end{array}\right) \cdot\binom{1}{0}=\left(\begin{array}{ll}1 & 0\end{array}\right) \cdot\binom{0}{1}=0, \quad$ and e.g. $\quad \boldsymbol{\sigma}_{1}^{2}=\left(\begin{array}{ll}1 & 0\end{array}\right) \cdot\binom{1}{0}=1$

From (5.261)-(5.262) we define two arbitrary 1-vectors in the $\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}\right\}$ plane
(5.265)

$$
\mathbf{a} \leftrightarrow\binom{a^{1}}{a^{2}}=a^{j}
$$

We form the product of the two matrix 2-tuples and see the differences
First, the inner scalar product is the same as for the 1 -vectors $\mathbf{b} \cdot \mathbf{a} \in \mathbb{R}$
(5.266)
$\left(\begin{array}{ll}b_{1} & b_{2}\end{array}\right) \cdot\binom{a^{1}}{a^{2}}=b_{1} a^{1}+b_{2} a^{2}=b_{k} a^{k} \quad \in \mathbb{R}$
But we have a different tuple epistemology than the geometric products of these 1-vectors ba or $\mathbf{a b}$ as above (5.56), when we form the product of the matrix 2 -tuples to a 2×2 matrix as
(5.267)

$$
\binom{a^{1}}{a^{2}}\left(b_{1} b_{2}\right)=\left[\begin{array}{ll}
a^{1} b_{1} & a^{1} b_{2} \\
a^{2} b_{1} & a^{2} b_{2}
\end{array}\right]=a^{j} b_{k}=\left[\begin{array}{ll}
c^{1}{ }_{1} & c^{1}{ }_{2} \\
c^{2}{ }_{1} & c^{1}{ }_{2}
\end{array}\right]=c_{k}^{j}, \quad \text { for } j, k=1,2
$$

5.6.1.2. Examples of Matrices of Geometric Multivectors

In a Euclidean-Cartesian plane, we define a set of 1-vectors

$$
\mathbf{a}_{j}=a_{1, j} \boldsymbol{\sigma}_{1}+a_{2, j} \boldsymbol{\sigma}_{2}=a_{j}^{k} \boldsymbol{\sigma}_{k} \in \mathcal{G}_{2}(\mathbb{R}), \quad \text { with } \quad a_{k, j}=a_{j}^{k} \in \mathbb{R}, k=1,2, \text { for Cartesian plane. }
$$

From this, for $m \in \mathbb{N}$ we form a m-row matrix

(5.269)

$[\mathbf{a}]_{(m)}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{m}\right)$
$\leftrightarrow\left[\begin{array}{llll}a_{1}{ }_{1} & a^{1}{ }_{2} & \cdots & a^{1}{ }_{m} \\ a^{2}{ }_{1} & a^{2}{ }_{2} & \cdots & a^{2}{ }_{m}\end{array}\right]$
From this, we form its transposed m-column matrix
(5.270)

$$
[\mathbf{a}]_{(m)}^{\mathrm{T}}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{m}\right)^{\mathrm{T}}=[\mathbf{a}]^{(m)}=\left(\begin{array}{c}
\mathbf{a}^{1} \\
\mathbf{a}^{2} \\
\vdots \\
\mathbf{a}^{m}
\end{array}\right)
$$

$$
\leftrightarrow\left[\begin{array}{cc}
a_{1}{ }^{1} & a_{2}{ }^{1} \\
a_{1}{ }^{2} & a_{2}{ }^{2} \\
\vdots & \vdots \\
a_{1}{ }^{m} & a_{2}{ }^{m}
\end{array}\right] \sim\left[\begin{array}{cc}
a_{1,1} & a_{2,1} \\
a_{1,2} & a_{2,2} \\
\vdots & \vdots \\
a_{1, m} & a_{2, m}
\end{array}\right] .
$$

[^0]For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

[^0]: ${ }^{265}$ Generally upper index x^{k} is used for column numbers to indicate contravariance opposite covariance or row numbers x_{k}.
 In the orthogonal case, there is no difference $x^{k}=x_{k} \quad$ (do not mistake k in x^{k} for exponents).
 ${ }^{266}$ We presume the reader is familiar with the rules of matrix multiplication. For this, I here have recalled it from [14] Chapter 4.

