Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

5.5.4. The Idempotent Operation

Operation by a multivector M can have some impact on an entity in physics. An extra operation by the same multivector M in some situations has no new effect.
This opportunity is called idempotence and for multivector-operations expressed as
$M(M)=M M=M^{2}=M$. The idempotent operation is often called a projection P where
(5.228) $\quad P(P)=P P=P^{2}=P$.

A projection multivector written in components for the plane basis $\left\{1, \boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, i:=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}\right\}$ (5.198) is

$$
P=\alpha+x_{1} \boldsymbol{\sigma}_{1}+x_{2} \boldsymbol{\sigma}_{2}+\beta \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}
$$

this is for the demand of idempotence
(5.230) $\quad P^{2}=\left(\alpha^{2}+x_{1}^{2}+x_{2}^{2}-\beta^{2}\right)+\left(2 \alpha x_{1}\right) \boldsymbol{\sigma}_{1}+\left(2 \alpha x_{2}\right) \boldsymbol{\sigma}_{2}+(2 \alpha \beta) \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}=\alpha+x_{1} \boldsymbol{\sigma}_{1}+x_{2} \boldsymbol{\sigma}_{2}+\beta \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}=P$ The scalar part must be preserved, as well as each independent direction
(5.231) $\quad\left(\alpha^{2}+x_{1}^{2}+x_{2}^{2}-\beta^{2}\right)=\alpha, \quad\left(2 \alpha x_{1}\right)=x_{1}, \quad\left(2 \alpha x_{2}\right)=x_{2}, \quad(2 \alpha \beta)=\beta$.

The over simplest solution $\alpha=0$ demand $x_{1}=x_{2}=\beta=0$ is nothing
The obvious possibility for idempotence is
(5.232) $\alpha=1 / 2$ and $x_{1}^{2}+x_{2}^{2}-\beta^{2}=1 / 4 \Rightarrow \beta= \pm \sqrt{x_{1}^{2}+x_{2}^{2}-1 / 4}$

Then we have all the possibilities of projection operators
(5.233) $\quad P=1 / 2+x_{1} \boldsymbol{\sigma}_{1}+x_{2} \boldsymbol{\sigma}_{2} \pm \sqrt{x_{1}^{2}+x_{2}^{2}-1 / 4} \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$

Again, using the Cartesian 1-vector $\mathrm{x}=x_{1} \boldsymbol{\sigma}_{1}+x_{2} \boldsymbol{\sigma}_{2}$ we get for all arbitrary 1-vector \mathbf{x}, with $|\mathrm{x}| \geq 1 / 2$ in the plane direction $i:=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$ the idempotent projection element
(5.234) $P=(1 / 2+\mathrm{x}) \pm i \sqrt{\mathrm{x}^{2}-1 / 4}$

Taking the arbitrary unit vector direction u, with $u^{2}=1 \Rightarrow|u|=1$ and setting $x= \pm 1 / 2 u$ in (5.234) we get writ of the plane part i and have the simplest primary idempotent projection operators
(5.235) $\quad P_{\mathrm{u}}=P_{+}=1 / 2(1+\mathrm{u})$, and its Clifford conjugated $\quad \bar{P}_{\mathrm{u}}=\widetilde{P_{\mathrm{u}}}=P_{-}=1 / 2(1-\mathrm{u})$,
for a unit $\mathrm{u}^{2}=1$ direction 1 -vector u in space, independent of any specific plane. - Anyway, defined generally $\mathbf{u} \neq \pm 1$, this unit is indeed not a member of any scalar field $\mathbf{u} \notin \mathbb{R}, \mathbb{C}$, or \mathbb{K}, but in our primitive definition, u is certainly a member of a 1 -vector field with a division algebra. Do we restrict the maximal grade to one for the algebra form $\langle A\rangle_{0}+\langle A\rangle_{1}$ we can consider $\mathbf{u} \sim\langle A\rangle_{1}$ as the pseudoscalar $\mathrm{u}^{2}=1$ of this algebra, with no reverse orientation, but the Clifford conjugated ${ }^{261}$

$$
\overline{\mathrm{u}}=-\mathrm{u}, \quad \text { with } \quad \overline{\mathrm{u}}^{2}=1
$$

The primary idempotent member P_{u} of the multivector algebra of grades $\langle A\rangle_{0}+\langle A\rangle_{1}$ has no inverse, and any real scaled dilation αP_{u} with idempotence $\left(\alpha P_{\mathrm{u}}\right)^{2}=\alpha^{2} P_{\mathrm{u}}$ has no inverse $\left(\alpha P_{\mathrm{u}}\right)^{-1}$, because:
$(1+u)^{-1}=\frac{1}{1+u}=\frac{1}{(1+u)} \frac{(1-u)}{(1-u)}=\frac{1-u}{1^{2}-u^{2}}=\frac{1-u}{1-1}=\frac{1-u}{0}, \quad$ that is undefined
These elements αP_{u} is therefore not members of an associative division algebra
Multiplying a dilated primary idempotent projection operator by its own direction unit 1-vector make no change to the projection operator
(5.238) $\quad \alpha P_{\mathrm{u}} \mathrm{u}=\mathrm{u} \alpha P_{\mathrm{u}}=\alpha P_{\mathrm{u}} \quad=1 / 2 \alpha(1+\mathrm{u}) \mathrm{u}=1 / 2 \alpha(\mathrm{u}+1), \quad \alpha \in \mathbb{R}$.

We say $\alpha P_{\mathrm{u}}=1 / 2 \alpha(1+\mathrm{u})$ has the quality of absorbing factors of its own direction unit u .
To count u as a pseudoscalar we need to restrict the algebra to one geometric line direction towards infinity. I.e., any proper 1 -vector $\mathbf{p} \sim\langle A\rangle_{1}$ has to fulfil $\mathbf{p} \wedge u=0$, which results in a line span
$\mathrm{p}=\lambda_{1} \mathrm{u}$, for $\forall \lambda_{1} \in \mathbb{R}$, from basis $\{\mathrm{u}\}$.
The scalar 1 in (5.235) is defined as the magnitude of $u,|u|=u^{2}=1$. See co-linear concept §4.4.4.1.
5.5.4.2. The Paravector Concept

The full mixed standard basis for multivectors of grade form $\langle A\rangle_{0}+\langle A\rangle_{1}$, then has the form $\{1, \mathrm{u}\}$ In this basis, we span multivectors of grades ≤ 1 we call paravectors ${ }^{262}$ expressed in the form

(5.240) $\mathcal{P}=\lambda_{0} 1+\lambda_{\mathrm{u}} \mathrm{u}=\lambda_{0}+\mathrm{p}$,

where $\mathbf{p}=\lambda_{1} \mathbf{u}=\lambda_{1} \hat{\mathbf{p}}$, and we use the real component coordinates $\lambda_{0}, \lambda_{1} \in \mathbb{R}$.
This paravector has a Clifford conjugated (or here just first grade parity inversion)
(5.241) $\bar{p}=\lambda_{0} 1-\lambda_{\mathrm{u}} \mathrm{u}=\lambda_{0}-\mathrm{p}$.

Such a multivector subject consist of a substance of a direction as a primary quality of first grade (pqg-1) together with a scalar as a primary quality of zero grade (pqg-0) with nodirection as a surplus scalar para idea to the Descartes extension pqg-1 idea.
As an object we have an extended vector $p=\lambda_{u} u$ that can be drawn on a surface as an arrow for intuition, to analogue indicate a natural direction u with an extension magnitude $|p|=\left|\lambda_{1}\right| \geq 0$. But we do not have any intuition object of the scalar part λ_{0}. From the object unit $u^{2}=1$ direction u we understand the geometric linear direction (parity inversion) $\overline{\mathrm{p}}=-\mathrm{p}$ of orientation for the Clifford conjugation. For intuit interpretation consult drawings above at \S 4.4.2.5 at (4.60)-(4.61) Of course, the paravector can exist in higher dimensions, e.g. for a plane $p=\lambda_{1} \sigma_{1}+\lambda_{2} \sigma_{2}$ implying the paravector $\mathcal{P}=\lambda_{0}+\mathrm{p}=\lambda_{0} 1+\lambda_{1} \sigma_{1}+\lambda_{2} \sigma_{2}$ from a basis $\left\{1, \sigma_{1}, \sigma_{2}\right\}$, but this basis implies further the $\langle A\rangle_{2}$ pseudoscalar $i:=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$ as (5.198) which we here try to avoid. ${ }^{26}$ Therefore, we settle from the simple basis $\{1, \mathrm{u}\}$ to make the fundamental structure for starting direction as a primary quality of first grade (pqg-1) loud and clear. ${ }^{264}$

Anyway, alternative we remember Immanuel Kant 1768 [11] p.361-72, (Der Gegenben im அiaume)
5.5.4.3. The Projection of a Paravector on Its Idempotent Basis

The paravector structure is also, as by Garret Sobczyk [14] Chap.2, called hyperbolic numbers. The defining foundation of the paravector ide is the basis $\{1, \mathrm{u}\}$ that supports each paravector as
(5.242) $\quad p=\lambda_{0} 1+\lambda_{u} u$,
and its Clifford conjugated $\overline{\mathcal{p}}=\lambda_{0} 1-\lambda_{\mathrm{u}} \mathrm{u}$
For investigating the structure of this paravector idea we will reformulate it in the idempotent orthogonal basis $\left\{P_{\mathrm{u}}, \bar{P}_{\mathrm{u}}\right\}$ defined from (5.235) as the simplest primary idempotent quality basis set
(5.243) $\quad P_{\mathrm{u}}^{2}=P_{\mathrm{u}}=1 / 2(1+\mathrm{u})$, and its Clifford conjugated $\quad \bar{P}_{\mathrm{u}}^{2}=\bar{P}_{\mathrm{u}}=1 / 2(1-\mathrm{u})$.

From this, we express its spectral decomposition projection on this basis as
(5.244) $\quad \mathcal{P}=\lambda_{+} P_{\mathrm{u}}+\lambda_{-} \bar{P}_{\mathrm{u}}, \quad$ and $\quad \overline{\mathcal{P}}=\lambda_{+} \bar{P}_{\mathrm{u}}+\lambda_{-} P_{\mathrm{u}}$,
with the component coordinates for the paravector projections
(5.245)

$$
\lambda_{+}=\left(\lambda_{0}+\lambda_{\mathrm{u}}\right) \quad \text { and } \quad \lambda_{-}=\left(\lambda_{0}-\lambda_{\mathrm{u}}\right) \quad \in \mathbb{R}
$$

Conversely from these the coordinates from definition basis $\{1, u\}$ for (5.242) is

$$
\lambda_{0}=1 / 2\left(\lambda_{+}+\lambda_{-}\right) \quad \text { and } \quad \lambda_{1}=1 / 2\left(\lambda_{+}-\lambda_{-}\right) \quad \in \mathbb{R}
$$

$\left\{P_{\mathrm{u}}, \bar{P}_{\mathrm{u}}\right\}$ is orthogonal because $1 / 2(1+\mathrm{u})^{1} / 2(1-\mathrm{u})=0$, due to the first definition (5.56)-(5.59)

(5.247)

$$
P_{\mathrm{u}} \bar{P}_{\mathrm{u}}=P_{\mathrm{u}} \cdot \bar{P}_{\mathrm{u}}=P_{\mathrm{u}} \wedge \bar{P}_{\mathrm{u}}=0
$$

This condition also shows that the two basis paravectors are mutual annihilating operations and we note their sum $P_{\mathrm{u}}+\bar{P}_{\mathrm{u}}=1$ is the unit scalar, and their difference $P_{\mathrm{u}}-\bar{P}_{\mathrm{u}}=\mathrm{u}$ is the direction quality of first grade
${ }^{262}$ The name paravector is taken from William E. Baylis [37], [36], (First named by J. G. Maks, Ph.D. thesis, TU Delft, 1989.) ${ }^{263}$ Later below we look into 3 space with a paravector as $p=\lambda_{0}+p=\lambda_{0} 1+\lambda_{1} \sigma_{1}+\lambda_{2} \sigma_{2}+\lambda_{3} \sigma_{3}$, implying higher $\boldsymbol{g r a d e s}\langle A\rangle_{2},\langle A\rangle_{3}$, etc. ${ }^{264}$ To set the straight-line direction unit basis u of a paravector basis $\{1, \mathrm{u}\}$ in perspective we take the existence in a possible plane and multiply by a perpendicular unit u_{\perp} as in (5.208) and get $\left\{1, \mathrm{u}, \mathrm{u}_{\perp}, i \equiv \mathrm{u}_{\perp} \mathrm{u}\right\}$. Then the paravector $p=\lambda_{0} 1+\lambda_{\mathrm{u}} \mathrm{u} \rightarrow$ goes to a multivector $\mathrm{u}_{\perp} \mathcal{P}=\lambda_{0} \mathrm{u}_{\perp}+\lambda_{\mathrm{u}} \mathrm{u}_{\perp} \mathrm{u}$, that is nilpotent if $\lambda_{\mathrm{u}}= \pm \lambda_{0}$.
(C) Jens Erfurt Andresen, M.Sc. NBI-UCPH,

Volume I, - Edition 2-2020-22 _-Revision

For quotation reference use: ISBN-13: 978-8797246931
For quotation reference use: ISBN-13: 978-8797246931

