	Restricted to brief peruse for research, reviews, or scholarly an	lar	y 515	<u>, </u>
- II The Geometry of Physics - 5. The Geometric Plane Concept - 5.5. Inherit Quantities of the Algebra for the Euclidean			R	/
5.5.4. The Idempotent Operation				
	Operation by a multivector M can have some impact on an <i>entity</i> in physics. An extra operation by the same multivector M in some situations has no new effect. This opportunity is called idempotence and for multivector-operations expressed as $M(M) = MM = M^2 = M$. The idempotent operation is often called a projection P where	tric Cri	Research on the a	x
(5.228)	$P(P) = PP = P^2 = P.$	tiq	0	
	A projection multivector written in components for the plane basis $\{1, \sigma_1, \sigma_2, i \coloneqq \sigma_2 \sigma_1\}$ (5.198) is	ne	n	
(5.229)	$P = \alpha + x_1 \boldsymbol{\sigma}_1 + x_2 \boldsymbol{\sigma}_2 + \beta \boldsymbol{\sigma}_2 \boldsymbol{\sigma}_1,$.0	—	
	this is for the demand of idempotence	fl	b	`
(5.230)	$P^{2} = (\alpha^{2} + x_{1}^{2} + x_{2}^{2} - \beta^{2}) + (2\alpha x_{1})\boldsymbol{\sigma}_{1} + (2\alpha x_{2})\boldsymbol{\sigma}_{2} + (2\alpha\beta)\boldsymbol{\sigma}_{2}\boldsymbol{\sigma}_{1} = \alpha + x_{1}\boldsymbol{\sigma}_{1} + x_{2}\boldsymbol{\sigma}_{2} + \beta\boldsymbol{\sigma}_{2}\boldsymbol{\sigma}_{1} = P.$	n	CD	
	The scalar part must be preserved, as well as each independent <i>direction</i>	re	8	
(5.231)	$(\alpha^2 + x_1^2 + x_2^2 - \beta^2) = \alpha,$ $(2\alpha x_1) = x_1,$ $(2\alpha x_2) = x_2,$ $(2\alpha\beta) = \beta.$	M	q	
	The over simplest solution $\alpha = 0$ demand $x_1 = x_2 = \beta = 0$ is nothing. The obvious possibility for idempotence is	ath	nic	•
(5.232)	$\alpha = \frac{1}{2}$ and $x_1^2 + x_2^2 - \beta^2 = \frac{1}{4} \implies \beta = \pm \sqrt{x_1^2 + x_2^2 - \frac{1}{4}}$. Then we have all the possibilities of projection operators	Mathematical Reasoning	m	•
(5.233)	$P = \frac{1}{2} + x_1 \boldsymbol{\sigma}_1 + x_2 \boldsymbol{\sigma}_2 \pm \sqrt{x_1^2 + x_2^2 - \frac{1}{4}} \boldsymbol{\sigma}_2 \boldsymbol{\sigma}_1.$	ttic	0	
	Again, using the Cartesian 1-vector $\mathbf{x} = x_1 \boldsymbol{\sigma}_1 + x_2 \boldsymbol{\sigma}_2$ we get for all arbitrary 1-vector \mathbf{x} , with $ \mathbf{x} \ge \frac{1}{2}$ in the plane <i>direction</i> $\mathbf{i} \coloneqq \boldsymbol{\sigma}_2 \boldsymbol{\sigma}_1$ the idempotent projection element	cal 1	fF	
(5.234)	$P = (\frac{1}{2} + \mathbf{x}) \pm \mathbf{i}\sqrt{\mathbf{x}^2 - \frac{1}{4}}.$	Re	F	`
	Taking the arbitrary unit vector <i>direction</i> u , with $\mathbf{u}^2 = 1 \Rightarrow \mathbf{u} = 1$ and setting $\mathbf{x} = \pm \frac{1}{2}\mathbf{u}$ in (5.234)	as	V	
	we get writ of the plane part <i>i</i> and have the simplest primary idempotent projection operators	on	$\mathbf{\Sigma}$	
(5.235)	$P_{\rm u} = P_{+} = \frac{1}{2}(1 + {\rm u}),$ and its Clifford conjugated $\overline{P}_{\rm u} = \widetilde{P}_{\rm u} = P_{-} = \frac{1}{2}(1 - {\rm u}),$	in	Physics	1
	for a unit $\mathbf{u}^2 = 1$ <i>direction</i> 1-vector \mathbf{u} in space, independent of any specific plane. – Anyway, defined generally $\mathbf{u} \neq \pm 1$, this unit is indeed not a member of any scalar field $\mathbf{u} \notin \mathbb{R}$, \mathbb{C} , or \mathbb{K} , but in our primitive definition, \mathbf{u} is certainly a member of a 1-vector field with a division algebra. Do we restrict the <i>maximal grade to one</i> for the algebra form $\langle A \rangle_0 + \langle A \rangle_1$ we can consider $\mathbf{u} \sim \langle A \rangle_1$ as the pseudoscalar $\mathbf{u}^2 = 1$ of this algebra, with no reverse orientation, but the Clifford conjugated ²⁶¹		•-	
(5.236)	$\overline{\mathbf{u}} = -\mathbf{u}$, with $\overline{\mathbf{u}}^2 = 1$	E	Je	
	The primary idempotent member P_u of the multivector algebra of grades $\langle A \rangle_0 + \langle A \rangle_1$ has no inverse, and any real scaled dilation αP_u with idempotence $(\alpha P_u)^2 = \alpha^2 P_u$ has no inverse $(\alpha P_u)^{-1}$, because:	litic	ns	
(5.237)	$(1+u)^{-1} = \frac{1}{1+u} = \frac{1}{(1+u)} \frac{(1-u)}{(1-u)} = \frac{1-u}{1^2-u^2} = \frac{1-u}{1-1} = \frac{1-u}{0}$, that is undefined. These elements αP_u is therefore not members of an associative division algebra.	n 2.	Jens Erfurt	
	Multiplying a dilated primary idempotent projection operator by its own direction unit 1-vector	$\overline{\bigcirc}$	fui	
(5.238)	make no change to the projection operator $\alpha P_{u} \mathbf{u} = \mathbf{u} \alpha P_{u} = \alpha P_{u} = \frac{1}{2} \alpha (1 + \mathbf{u}) \mathbf{u} = \frac{1}{2} \alpha (\mathbf{u} + 1), \alpha \in \mathbb{R}.$	2	4	
(3.238)	We say $\alpha P_{\mathbf{u}} = \frac{1}{2}\alpha(1 + \mathbf{u})\mathbf{u} = \frac{1}{2}\alpha(\mathbf{u} + \mathbf{l})$, $\alpha \in \mathbb{N}$. We say $\alpha P_{\mathbf{u}} = \frac{1}{2}\alpha(1 + \mathbf{u})$ has the <i>quality</i> of absorbing factors of its own <i>direction</i> unit \mathbf{u} . To count \mathbf{u} as a pseudoscalar we need to restrict the algebra to one geometric line <i>direction</i> towards infinity. I.e., any proper 1-vector $\mathbf{p} \sim \langle A \rangle_1$ has to fulfil $\mathbf{p} \wedge \mathbf{u} = 0$, which results in a line span	© 2020-22	And	
(5.239)	$\mathbf{p} = \lambda_1 \mathbf{u}$, for $\forall \lambda_1 \in \mathbb{R}$, from basis {u}. The scalar 1 in (5.235) is defined as the magnitude of \mathbf{u} , $ \mathbf{u} = \mathbf{u}^2 = 1$. See co-linear concept §4.4.4.1.		lresen	262 263 264
²⁶¹ For <i>grad</i>	<i>e</i> 1-vectors the Clifford conjugated is the same as the <i>parity inversion</i> $\tilde{\mathbf{u}} = \overline{\mathbf{u}} = -\mathbf{u}$, in that $\mathbf{u}^{\dagger} = \mathbf{u}$ for reversion.		n	
© Jens	Erfurt Andresen, M.Sc. Physics, Denmark - 202 - Research on the a priori of Physics - December 2022			(
	For quotation reference use: ISBN_13: 078_8707246031			

© Copyrighted material from hardback: ISBN-13: 978-8797246931, paperback: ISBN-13: 978-8797246948, Kindle and PDF-file: ISBN-13: 978-8797246917

For quotation reference use: ISBN-13: 978-8797246931

- 5.5.4. The Idempotent Operation - 5.5.4.3 The Projection of a Paravector on Its Idempotent Basis -

5.5.4.2. The Paravector Concept

The full mixed standard basis for multivectors of grade form $\langle A \rangle_0 + \langle A \rangle_1$, then has the form $\{1, u\}$. In this basis, we span multivectors of *grades* ≤ 1 we call *paravectors*²⁶² expressed in the form

 $p = \lambda_0 1 + \lambda_n \mathbf{u} = \lambda_0 + \mathbf{p},$ (5.240)

> where $\mathbf{p} = \lambda_1 \mathbf{u} = \lambda_1 \mathbf{\hat{p}}$, and we use the real component coordinates $\lambda_0, \lambda_1 \in \mathbb{R}$. This paravector has a Clifford conjugated (or here just first grade parity inversion)

 $\overline{p} = \lambda_0 1 - \lambda_u \mathbf{u} = \lambda_0 - \mathbf{p}.$ (5.241)

> Such a multivector subject consist of a substance of a direction as a primary quality of first grade (pqg-1) together with a scalar as a primary quality of zero grade (pqg-0) with no*direction* as a surplus scalar para idea to the Descartes extension *pag-1* idea. As an object we have an extended vector $\mathbf{p} = \lambda_n \mathbf{u}$ that can be drawn on a surface as an arrow for intuition, to analogue indicate a natural *direction* **u** with an extension magnitude $|\mathbf{p}| = |\lambda_1| \ge 0$. But we do not have any intuition object of the scalar part λ_0 . From the object unit $\mathbf{u}^2 = 1$ direction **u** we understand the geometric linear *direction* (*parity inversion*) $\overline{\mathbf{p}} = -\mathbf{p}$ of orientation for the Clifford conjugation. For intuit interpretation consult drawings above at § 4.4.2.5 at (4.60)-(4.61). Of course, the paravector can exist in higher dimensions, e.g. for a plane $\mathbf{p} = \lambda_1 \boldsymbol{\sigma}_1 + \lambda_2 \boldsymbol{\sigma}_2$ implying the paravector $p = \lambda_0 + \mathbf{p} = \lambda_0 \mathbf{1} + \lambda_1 \boldsymbol{\sigma}_1 + \lambda_2 \boldsymbol{\sigma}_2$ from a basis $\{1, \boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2\}$, but this basis implies further the $\langle A \rangle_2$ pseudoscalar $i \coloneqq \sigma_2 \sigma_1$ as (5.198) which we here try to avoid.²⁶³ Therefore, we settle from the simple basis $\{1, u\}$ to make the fundamental structure for starting direction as a primary quality of first grade (pqg-1) loud and clear.²⁶⁴ - Anyway, alternative we remember Immanuel Kant 1768 [11] p.361-72, (der Begenden im Raume).

5.5.4.3. The Projection of a Paravector on Its Idempotent Basis The paravector structure is also, as by Garret Sobczyk [14] Chap.2, called hyperbolic numbers. The defining foundation of the paravector ide is the basis $\{1, u\}$ that supports each paravector as

 $p = \lambda_0 1 + \lambda_{\mu} \mathbf{u},$ and its Clifford conjugated $\overline{p} = \lambda_0 1 - \lambda_\mu u$ (5.242)For investigating the structure of this paravector idea we will reformulate it in the *idempotent*

(5.243)
$$P_{\mathbf{u}}^2 = P_{\mathbf{u}} = \frac{1}{2}(1+\mathbf{u})$$
, and its Clifford conjugated $\overline{P}_{\mathbf{u}}^2 = \overline{P}_{\mathbf{u}} = \frac{1}{2}(1-\mathbf{u})$.

From this, we express its spectral decomposition projection on this basis as

- $p = \lambda_+ P_{\mu} + \lambda_- \overline{P}_{\mu}$, and $\overline{\mathcal{P}} = \lambda_{+} \overline{P}_{\mathbf{u}} + \lambda_{-} P_{\mathbf{u}},$ (5.244)with the component coordinates for the paravector projections (5.245) $\lambda_{+} = (\lambda_{0} + \lambda_{\mu})$ and $\lambda_{-} = (\lambda_{0} - \lambda_{1})$
 - Conversely from these the coordinates from definition basis $\{1, u\}$ for (5.242) is

(5.246)
$$\lambda_0 = \frac{1}{2}(\lambda_+ + \lambda_-)$$
 and $\lambda_1 = \frac{1}{2}(\lambda_+ - \lambda_-)$

$$\{P_{\mathbf{u}}, \overline{P}_{\mathbf{u}}\}$$
 is orthogonal because $\frac{1}{2}(1+\mathbf{u})\frac{1}{2}(1-\mathbf{u}) =$

(5.247)
$$P_{\mathbf{u}}\overline{P}_{\mathbf{u}} = P_{\mathbf{u}} \cdot \overline{P}_{\mathbf{u}} = P_{\mathbf{u}} \wedge \overline{P}_{\mathbf{u}} = 0.$$

This condition also shows that the two basis paravectors are mutual annihilating operations, and we note their sum $P_{\rm u} + \overline{P}_{\rm u} = 1$ is the unit scalar, and their difference $P_{\rm u} - \overline{P}_{\rm u} = \mathbf{u}$ is the direction quality of first grade.

	• • •
multivector $\mathbf{u}_{\perp} \boldsymbol{p} = \lambda_0 \mathbf{u}_{\perp} + \lambda_{\mathbf{u}} \mathbf{u}_{\perp} \mathbf{u}$, that is nilpotent if $\lambda_{\mathbf{u}} =$	$=\pm\lambda_0.$
and multiply by a perpendicular unit \mathbf{u}_{\perp} as in (5.208) and g	
²⁶⁴ To set the straight-line <i>direction</i> unit basis u of a paravector	
²⁶³ Later below we look into 3 space with a paravector as $p = \lambda$	
²⁶² The name <i>paravector</i> is taken from William E. Baylis [37],	

⑦ Jens Erfurt Andresen, M.Sc. NBI-UCPH,

- 203

For quotation reference use: ISBN-13: 978-879724693

orthogonal basis $\{P_{\mu}, \overline{P}_{\mu}\}$ defined from (5.235) as the simplest primary idempotent quality basis set

 $\in \mathbb{R}$.

λ_) ∈ℝ.

0, due to the first definition (5.56)-(5.59):

med by J. G. Maks, Ph.D. thesis, TU Delft, 1989.) $\sigma_1 + \lambda_2 \sigma_2 + \lambda_3 \sigma_3$, implying higher grades $\langle A \rangle_2, \langle A \rangle_3$, etc. n perspective we take the existence in a possible plane $[\mathbf{u}_{1}\mathbf{u}]$. Then the paravector $p = \lambda_0 1 + \lambda_{1}\mathbf{u} \rightarrow \text{goes to a}$