All the preceding pages 23-197 have first been written in Danish by the author, and primo 2017 translated into English by the same author.

Copyrighted material from hardback: ISBN-13: 978-8797246931, paperback: ISBN-13: 978-8797246948, Kindle and PDF-file: ISBN-13: 978-87972469.

The following chapters below are written directly in English. First chapter 6 is about natural space then afterwards followed by chapters 5.5-5.9 expanding the classical plane geometry, finalised by chapter 7 with Geometric Space-Time-Algebra for relations in natural Space.

Geometric Research Critique on (5 the of Pure 2 Mathematical Reasoning priori **Physics** (5.199)Edition ens (5.200)(5.201)rfurt ndres $\frac{12}{2}$ en (5.205)

- 5.5.3. The Nilpotent Operation - 5.4.5.5 The Duality of Direction -

5.5. Inherit Quantities of the Algebra for the Euclidean Geometric Plane Concept We define the algebraic foundation of a geometric plane concept from two orthonormal basis vectors $\{\sigma_1, \sigma_2\}$. From these two 1-vectors, we define the bivector $\mathbf{i} = \sigma_2 \wedge \sigma_1 = \sigma_2 \sigma_1$ as the outer product of two unit 1-vectors. *i* is called the unit pseudoscalar for that plane. We form the 4-dimensional linear algebra for the Euclidean plane $\mathcal{G}_{2,0}(\mathbb{R}) = \mathcal{G}_2(\mathbb{R})$ by the generalised 2-multivector form as (5.161)

5.197)
$$M = \alpha + x_1 \boldsymbol{\sigma}_1 + x_2 \boldsymbol{\sigma}_2 + \beta \boldsymbol{\sigma}_2 \boldsymbol{\sigma}_1 =$$

in the plane space spanned from the mixed 2^2 -dimensional standard basis for the algebraic plane

$$(5.198) \qquad \{\mathbf{1}, \ \mathbf{\sigma}_1, \mathbf{\sigma}_2, \ \mathbf{i} \coloneqq \mathbf{\sigma}_2 \mathbf{\sigma}_1\}$$

This orthonormal mixed standard basis possesses a multiplication structure expressed in Table 5.1.

Table 5.1	Multi	plicati	on basi	is for the	he Euclidian plane algebra ($G_{2,0}(\mathbb{R})$ w	ith the p	seudosca	lar unit l	$\equiv \sigma_2 \sigma_1$
$\{1, \boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \boldsymbol{i}\}$					The orthonormal basis	$\{1, \boldsymbol{\sigma}_1\}$, <mark>σ</mark> 2,	$\sigma_2 \sigma_1$		
left	1	σ ₁	σ2	i	$\boldsymbol{\sigma}_2 \cdot \boldsymbol{\sigma}_1 = 0,$	left	1	σ ₁	σ ₂	$\sigma_2 \sigma_1$
1	1	σ ₁	σ2	i		1	1	σ ₁	σ ₂	σ ₂ σ ₁
$\mathbf{\sigma}_1$	σ_1	1	-i	-σ ₂	$\sigma_k^2 = 1,$	$\mathbf{\sigma}_1$	σ_1	1	$-\boldsymbol{\sigma}_2\boldsymbol{\sigma}_1$	-σ ₂
σ2	σ2	i	1	$\mathbf{\sigma}_1$		σ2	σ2	$\sigma_2 \sigma_1$	1	$\mathbf{\sigma}_1$
i	i	σ ₂	-σ ₁	-1	$\boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2 = -\boldsymbol{\sigma}_2 \boldsymbol{\sigma}_1.$	$\sigma_2 \sigma_1$	$\sigma_2 \sigma_1$	σ ₂	$-\sigma_1$	-1

The possibility of products of two elements expands to all linear combinations of these in the form (5.197) and these 2-multivectors can be multiplied further *inside* the algebra $\mathcal{G}_{2,0}(\mathbb{R})$.

5.5.2. The Auto Product Square in the Euclidean plane

A simple product of 2-multivectors is the square of (

 $M^2 = M(M) = MM = (\alpha + x_1 \sigma_1 + x_2 \sigma_2 + \beta \sigma_2 \sigma_3)$

 $M^2 = M(M)$, this multiplication is an auto operation of a multivector on itself.

5.5.3. The Nilpotent Operation

In some situations, the multiple operations with multivectors are vanishing and nihilate. The simplest case is $M(M) = M^2 = 0$, hence we in $\mathcal{G}_{2,0}(\mathbb{R})$ by (5.199) express it as

- $M^{2} = (\alpha^{2} + x_{1}^{2} + x_{2}^{2} \beta^{2}) + (2\alpha x_{1})\boldsymbol{\sigma}_{1} + (2\alpha x_{2})\boldsymbol{\sigma}_{2} + (2\alpha\beta)\boldsymbol{\sigma}_{2}\boldsymbol{\sigma}_{1} = 0.$ For the nihilation, the scalar part must vanish, therefore an easy solution is to set
- $\alpha = 0$, and $\beta^2 = x_1^2 + x_2^2 \Rightarrow \beta = \pm \sqrt{x_1^2 + x_2^2}$, that works for $\forall x_k \in \mathbb{R}$, k=1,2. A nilpotent multivector in the Euclidean plane $\mathcal{G}_{2,0}(\mathbb{R})$ is then

(5.202)
$$X = x_1 \boldsymbol{\sigma}_1 + x_2 \boldsymbol{\sigma}_2 \pm \sqrt{x_1^2 + x_2^2} \boldsymbol{\sigma}_2 \boldsymbol{\sigma}_1.$$

Writing the Cartesian 1-vector $\mathbf{x} = x_1 \boldsymbol{\sigma}_1 + x_2 \boldsymbol{\sigma}_2$, we

(5.203)
$$X = \mathbf{x} \pm |\mathbf{x}|\mathbf{i} = \beta(\mathbf{u} \pm \mathbf{i}), \text{ with } \mathbf{u} = \beta(\mathbf{u} \pm \mathbf{i})$$

A test of this nihilation is due to that $i\mathbf{x} + \mathbf{x}\mathbf{i} = 0$ express that $\mathbf{x} \parallel \mathbf{i}$ or $\mathbf{x} \wedge \mathbf{i} = \mathbf{i} \wedge \mathbf{x} = 0$.

(5.204)
$$X(X) = X^2 = |\mathbf{x}|^2 = |\mathbf{x}|^2$$

this is equivalent to $(\beta(\mathbf{u} \pm \mathbf{i}))^2 = 0.$ 0, Using the unit 1-vector *direction* $\mathbf{u} = \hat{\mathbf{x}} = \mathbf{x}/|\mathbf{x}|$, in the plane *direction* $\mathbf{i} = \sigma_2 \sigma_1$ with β from (5.201) we write (5.203) for the Euclidean plane the *nilpotent multivector* as

 $\beta(\mathbf{u} \pm \mathbf{i}),$ where $\mathbf{u} \wedge \mathbf{i} = 0$.

Ĉ	Jens Erfurt Andresen, M.Sc. NBI-UCPH,	- 19

99

For quotation reference use: ISBN-13: 978-8797246931

- 198

Research on the a priori of Physics

December 2022

C Jens Erfurt Andresen, M.Sc. Physics, Denmark

 $\alpha \mathbf{1} + x_1 \mathbf{\sigma}_1 + x_2 \mathbf{\sigma}_2 + \beta \mathbf{i}$

5.197)

$$_{1}^{1})^{2} = +(\alpha^{2} + x_{1}^{2} + x_{2}^{2} - \beta^{2})1 + (2\alpha x_{1})\sigma_{1} + (2\alpha x_{2})\sigma_{2} + (2\alpha\beta)\sigma_{2}\sigma_{1}$$

e can write the nilpotent multivector as $= \mathbf{x}/|\mathbf{x}|$, and $\beta^2 = \mathbf{x}^2 > 0$, $\beta \in \mathbb{R}$.