Restricted to brief peruse for research, reviews, or scholarly analysis, © with required quotation reference: ISBN-13: 978-8797246931

5.4.5. Rotation Inside the Same Plane Direction

Two different normalized 1 -vectors \mathbf{u} and \mathbf{v} where $\mathbf{v} \neq \mathbf{u}$, $|u|=|v|=1$ form a bivector $\mathbf{v} \wedge \mathbf{u}$, which spans a plane $\lambda_{u v}$. The product of these two also forms a 2 -multi-vector $U=\mathbf{v u}$, which works in the rotor plane λ_{uv}, which is the plane of Figure 5.46 in which, there too are indicated two reflecting planes $\gamma_{\perp u} \perp \mathbf{u}$ and $\gamma_{\perp v} \perp \mathbf{v}$ as smalldotted lines for intuition. These are transversal normal planes to each of the 1 -vectors \mathbf{u} and \mathbf{v} These two plane objects $\gamma_{\perp u} \perp \lambda_{\mathrm{uv}}$ and $\gamma_{\perp \mathrm{v}} \perp \lambda_{\mathrm{uv}}$ intersect each other in one straight line with the direction $\widehat{\omega} \perp \lambda_{\mathrm{uv}}$, normal to the paper pointing towards the observer, who is seeded in a remote ${ }^{\infty}$ origo and looks at the plane as an intuiting interpreter of the Figure 5.46 plane. We consider any arbitrary 1 -vector \mathbf{x}, in space $\mathfrak{5}$ whose projection on the $\lambda_{\text {uv }}$ plane is showed Figure 5.46 \mathbf{x} can be reflected around \mathbf{u}, then we get $\mathbf{x}^{\prime}=\mathbf{u x u}$, or reflected along \mathbf{u}, so that $\mathbf{x}=-\mathbf{u x u}=\mathcal{U}_{\mathbf{x}}$ (dashed), is called an irregular rotation.

Hereafter \mathbf{x}^{\prime} is reflected around \mathbf{v}, we get $\mathbf{v x} x^{\prime} \mathbf{v}$ or $\mathbf{x}^{\prime \prime}$ reflected along \mathbf{v} ${ }_{\text {Figure }} 5.46, \frac{\mathcal{R}}{}$, Rotation in a plane. two reflection we achieve $-v x " v=\underline{\mathcal{V}} \mathbf{x}$, as another irregular rotation.
We compose these two reflections to one regular rotation $\underline{\mathcal{R}}=\underline{\mathcal{V}} \underline{\mathcal{U}}$ (by double sandwiching)
$\underline{\mathcal{R}} \mathrm{x}=U \mathbf{x} U^{\dagger}=\mathbf{v u x u v}=-\mathbf{v x}{ }^{\prime \prime} \mathbf{v}=-\mathbf{v}(-\mathbf{u x u}) \mathbf{v} \quad$ alternative $=\mathbf{v x}{ }^{\prime} \mathbf{v}=\mathbf{v}(\mathbf{u x u}) \mathbf{v}$
We see that the ambiguity of reflection through a 1 -vector is eliminated by this doublet composition, where the multi-vector concept vu is the generator of the transformation.
We define a 2 -multivector as an operator called a rotor

(5.191) $U=\mathbf{v u}=\mathbf{v} \cdot \mathbf{u}+\mathbf{v} \wedge \mathbf{u}=e^{+1 / 2 \boldsymbol{\theta}}=e^{+\boldsymbol{i} \theta}$

(5.192) $U^{\dagger}=\mathbf{u v}=\mathbf{v} \cdot \mathbf{u}-\mathbf{v} \wedge \mathbf{u}=e^{-1 / 2 \boldsymbol{\theta}}=e^{-\boldsymbol{i} \theta}$

Here we introduce the bivector $1 / 2 \boldsymbol{\theta}=\boldsymbol{i} \theta$ which represents the rotor area with direction, as an argument for this
2-multivector exponential function $e^{ \pm^{1 / 2 \theta}}$
The unit of plane direction is $\boldsymbol{i}=\hat{\boldsymbol{\theta}}$, refer to (5.8), (5.90). Hence, the regular rotation as a linear transformation is
(5.193) $\quad \mathcal{R} \mathbf{x}=U \mathbf{x} U^{\dagger}=e^{1 / 2 \theta} \mathbf{x} e^{-1 / 2 \theta}=e^{\boldsymbol{\theta}} \mathbf{x}=e^{i \theta} \mathbf{x} e^{-i \theta}=e^{i 2 \theta} \mathbf{x}$

The unitary rotor 2 -multivector is rotational invariant in its own plane. This means, its pqg-1 directions by the individual 1 -vectors \mathbf{u} and \mathbf{v} lose their specific meaning, and instead their relative direction area $1 / 2 \boldsymbol{\theta}$, which is the $p q g$ - 2 direction of that rotation area. The 1 -rotor is

$$
U_{\theta}=e^{+1 / 2 \theta}=e^{+i \theta}
$$

and the regular rotation is $\underline{\mathcal{R}} \mathrm{x}=U \mathrm{x} U^{\dagger}$ in Figure 5.47, (by rotor sandwiching)
If the start 1 -vector x is in the rotor plane, we can choose $U=\mathrm{uv}=\mathrm{ux} /|\mathrm{x}|$ the resulting 1 -vector $U^{2} \mathbf{X}=e^{i 2 \theta} \mathbf{X}$ is in that same plane reduced to a reflection (5.170) $\mathbf{x}^{\prime}=\mathbf{u x u}$ displayed in Figure 5.42 where $\mathrm{v} \| \mathrm{x}$ is omitted. -

The general formulation (5.193) $\underline{\mathcal{R}} \mathbf{x}=U \mathbf{x} U^{\dagger}$ apply to all vectors in space \mathfrak{G} outside the rotor U plane direction, see more below \S 6.3.3, Figure 6.12.

C Jens Erfurt Andresen, M.Sc. Physics, Denmark
For quotation reference use: ISBN-13: 978-8797246931

This form $\mathcal{R} \mathrm{x}=U \mathrm{x} U^{\dagger}$ is often called the canonical form for any orthogonal transformation \mathcal{R}. This is the pqg-2 essence of rotation, the primary quality of the second grade for all space \mathfrak{G} of physics. A rotation plane direction is the same subject all over space \mathbb{G}_{5} (translation invariance) This pqg-2 symmetry is an a priori foundation for all space \mathfrak{G} in physics.

5.4.5.2. The Half-Angle Rotor of an Euler Rotation

We see that when we have a 1-rotor (5.194) $U_{\theta}=e^{+\boldsymbol{i} \theta}$ the full regular rotation has an argument with the double angle $\underline{\mathcal{R}} \mathbf{x}=U \mathbf{x} U^{\dagger}=U^{2} \mathbf{x}=e^{i 2 \theta} \mathbf{x}$. Therefore, we almost always write a 1-rotor with a half angle $1 / 2 \varphi$ argument causing the full regular rotation with the full angle φ in this
(5.195) $\quad U_{\varphi}=e^{+\boldsymbol{i}^{1} / 2 \varphi} \Rightarrow U_{\varphi}^{2}=e^{+\boldsymbol{i} \varphi} \Rightarrow \quad \underline{\mathcal{R}} \mathbf{x}=U_{\varphi} \mathbf{x} U_{\varphi}^{\dagger}=e^{+\boldsymbol{i}^{1} / 2 \varphi} \mathbf{x} e^{-\boldsymbol{i}^{1} / 2 \varphi}=U_{\varphi}^{2} \mathbf{x}=e^{+\boldsymbol{i} \varphi} \mathbf{x}$.

This we call an Euler rotation, and if the rotor $e^{ \pm \boldsymbol{i}^{1} / 2 \varphi}$ is in one fixed plane \boldsymbol{i} we call it a 1-rotor. The purpose of half angles $1 / 2 \varphi$ is clear when it comes to Euler rotations in several planes .

5.4.5.3. The Idea of an Active Rotatio

As we know from the treatment in chapters 1, 2 and 3, to experience physics something happens. There always is a development, and the measure for this is a development parameter t given from a rotating circle oscillator with frequency energy ω. We now see that this circle oscillation is a rotation along a Euclidean plane. We simply write this unitary as a plane rotation operator
(5.196) $e^{ \pm i \omega t}=e^{ \pm i \varphi}=U_{\varphi}^{2}$
where \boldsymbol{i} is the unit bivector direction of the Euclidean rotation plane, and $\omega t=\varphi$ is the active quantum mechanical phase angle of the oscillating entity, which describes the development. ${ }^{259}$ A 1-rotor for an oscillation is often just written $U_{\varphi}=e^{ \pm \boldsymbol{i}^{1} / 2 \varphi}=e^{ \pm \boldsymbol{i}^{1} / 2 \omega t}$
5.4.5.4. The Invariant Direction of a Rotor

The rotational invariance of the rotor object $U=\mathrm{vu}=\mathrm{v} \cdot \mathrm{u}+\mathrm{v} \wedge \mathrm{u}$ is illustrated by the difference from Figure 5.46 to Figure 5.47 in accordance with the idea in \S 5.2.7.4 and Figure 5.23.
By normal duality, we can characterise the rotation plane $\lambda_{U}=\lambda_{\mathrm{uv}}=\lambda_{\mathrm{u} \wedge \mathrm{v}}=\lambda_{\boldsymbol{\theta}}=\lambda_{\boldsymbol{i}}=\lambda_{\llcorner\widehat{\omega}}$ by a new 1 -vector $\widehat{\omega},|\widehat{\omega}|=1$, which is the normal vector to the rotation plane $\widehat{\omega} \perp \lambda_{U}$. This pqg-1-vector subject is perpendicular to the 'paper' plane in Figure 5.46 and
Figure 5.47 and indicates the direction, that light has to face the observer from the rotation plane. - Imagine that you look perpendicular to the figure plane surface right on. ${ }^{260}$

5.4.5.5. The Duality of Direction

The light you as the reader of this book receive and see has two characteristics

- You receive it as a particle expressed as a momentum pqg-1-vector $\frac{\hbar}{C} \omega \widehat{\omega}$, or
- You receive it as a transversal plane wave expressed through a unitary development 1-rotor $U_{\omega}(t)=e^{ \pm \boldsymbol{i} \theta}=e^{ \pm \boldsymbol{i} \omega t} \sim \mathrm{be}=\mathrm{b} \cdot \mathrm{e}+\mathrm{b} \wedge \mathrm{e}$. We presume orthogonality $\mathrm{b} \cdot \mathrm{e}=0$ Then the field bivector $\mathrm{F}=\mathrm{b} \wedge \mathrm{e} \sim \| \boldsymbol{i}$ gives the plane pqg-2 direction of the wavefront.
These two are mutual dual following the complementarity principle between particle pqg-1 direction and the plane wavefront pqg-2 direction, where the plane rotor is a combination of a scalar pqg-0 quality without direction and the bivector plane direction pqg-2 quality as an even geometric algebra.
The idea of a particle picture of a physical entity will be concerned with the odd part of Geometric Algebra. More of this below in the following chapters.
${ }^{259} \mathrm{We}$ will below in section 5.7.5 interpret the development as a direction unit called γ_{0} as a 1-vector in Space-Time-Algebra ${ }^{260}$ You cannot see $\widehat{\omega}$ in perspective, which causes the viewing angle loses its meaning. (An abstraction automatic don in your brain.) Later in Section 5.7.4, this will give analytical meaning by the null direction of a Lorentz rotation.
The duality concept problem will be further analysed in chapter 6 .
(C) Jens Erfurt Andresen, M.Sc. NBI-UCPH,

