Restricted to brief peruse for research，reviews，or scholarly analysis，© with required quotation reference：ISBN－13：978－8797246931

This general 2－multi－vector is constructed from three 1－vectors
－An arbitrary norm and start direction 1－vector
\mathbf{u} ，with $|\mathbf{u}|=1$ unit
－An arbitrary related radius direction 1 －vector
\mathbf{r} ，with $|\mathbf{r}|=\rho$ dilation．
－An arbitrary translation direction 1 －vector
t ，with $\mathrm{t} \|(\mathbf{r} \wedge \mathbf{u})$ or $\mathrm{t} \sharp(\mathbf{r} \wedge \mathbf{u})$
$\mathbf{r} \cdot \mathbf{u}=\alpha \quad$ is the geometric $\boldsymbol{p q g}$－ 0 scalar，
$\langle A\rangle_{0}$
$\mathbf{r} \wedge \mathbf{u}=\beta \boldsymbol{i} \quad$ is the geometric plane direction pqg－2 bivector，$\quad\langle A\rangle_{2}$
ru \quad is the geometric spinor in that plane direction，$\quad\langle A\rangle_{0}+\langle A\rangle_{2}$
$\mathrm{t} \|(\mathbf{r} \wedge \mathbf{u}) \quad$ is a translation inside that same object plane direction，$\quad\langle A\rangle_{1}$
$\mathbf{t} \#(\mathbf{r} \wedge \mathbf{u}) \quad$ is a translation of that object plane through space as that same plane subject direction pqg－2，which is translation invariant through all space \mathfrak{F} ！
One specified plane subject direction is the same all over space \mathfrak{F} in physics．${ }^{254}$
A traditional plane object can be defined by two orthonormal basis vectors $\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}\right\} \|(\mathbf{r} \wedge \mathbf{u}){ }^{255}$ implying the bivector concept $\boldsymbol{i}:=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$ ．In that plane，we express every arbitrary 1 －vector

$\langle A\rangle_{1} \sim \mathbf{x}=x_{1} \sigma_{1}+x_{2} \sigma_{2}$.

Special a translation $\mathbf{t}=t_{1} \boldsymbol{\sigma}_{1}+t_{2} \boldsymbol{\sigma}_{2}$.
as a vector element in an ordinary vector space $\mathrm{x} \in\left(V_{2}, \mathbb{R}\right) \sim \mathbb{R}_{1}^{2}$
In the geometric algebra $\mathcal{G}_{2}(\mathbb{R})=\mathcal{G}\left(V_{2}, \mathbb{R}\right)$ ，we express it as（5．159）for the 2－multi－vector concep
（5．161）$\quad A=\alpha+\underbrace{x_{1} \sigma_{1}+x_{2} \sigma_{2}}+\beta \boldsymbol{i} \quad \in \mathcal{G}_{2}(\mathbb{R})$
（5．162）$A=\langle A\rangle_{0}+\langle A\rangle_{1}+\langle A\rangle_{2}$
We as David Hestenes［10］p． 53 split the plane geometric algebra into two parts $\mathcal{G}_{2}=\mathcal{G}_{2}^{-}+\mathcal{G}_{2}^{+}$， where the odd algebra \mathcal{G}_{2}^{-}is the ordinary 2－dimensional vector space $\left(V_{2}, \mathbb{R}\right) \sim \mathbb{R}_{1}^{1} \oplus \mathbb{R}_{2}^{1} \leftrightarrow \mathbb{R}_{1,2}^{2}$ for 1－vectors $\mathrm{x}=\langle A\rangle_{1} \in \mathcal{G}_{2}^{-}$，and the even algebra \mathcal{G}_{2}^{+}is the 2 －dimensional linear space of 1 －spinors

$$
\langle A\rangle_{0}+\langle A\rangle_{2}=\alpha+\beta \boldsymbol{i}=\mathbf{r} \cdot \mathbf{u}+\mathbf{r} \wedge \mathbf{u}=\mathbf{r u}=\rho U_{\theta}=\rho e^{\boldsymbol{i} \theta} \quad \in \mathcal{G}_{2}^{+}
$$

The object foundation of this even algebra \mathcal{G}_{2}^{+}is the fundamental scalar count $1 \in \mathbb{R}$ and the orientated unit area \boldsymbol{i} as the basis set $\{1, \boldsymbol{i}\}$ ．Together these two algebras $\mathcal{G}_{2}=\mathcal{G}_{2}^{-}+\mathcal{G}_{2}^{+}$constitute a 4－dimensional linear space over the multi－vector basis
（5．164）$\quad\left\{1, \boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{i}=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}\right\}$ ，
with the odd coordinates x_{1}, x_{2} and the even coordinates α, β as in（5．161）．
The entire 2－multi－vector A has the potential to characterise the plane quality as well as a quantity for some physical entity．－For the Euclidean plane algebra，we use the nomenclature $\mathcal{G}_{2,0}(\mathbb{R}) \leftarrow \mathcal{G}_{2}$ ．

5．3．8．The Magnitude of a Multivector

The generalised multivector A can be dissolved in its independent grade components $\langle A\rangle_{r}$
$A=\sum_{r=0}^{n}\langle A\rangle_{r}=\langle A\rangle_{0}+\langle A\rangle_{1}+\langle A\rangle_{2}+\cdots+\langle A\rangle_{n} \quad \in \mathcal{G}_{n}=\mathcal{G}_{n}(\mathbb{R})$.
Note that each $\langle A\rangle_{r}$ of grade－r for $n \geq r>2$ is an external extension to the plane concept．The magnitude，also called the modulus of a multi－vector is generally defined［10］p． 46 and［13］p．13：
（5．166）$\quad|A|=\sqrt{\left\langle A^{\dagger} A\right\rangle_{0}}, \quad$ so that $\quad|A|^{2}=\left\langle A^{\dagger} A\right\rangle_{0}=\sum_{r=0}^{n} A_{r}^{\dagger} A_{r}=\sum_{r=0}^{n}\left|\langle A\rangle_{r}\right|^{2} \geq 0$ ，written out （5．167）$\quad|A|^{2}=\left\langle A^{\dagger} A\right\rangle_{0}=\left|\langle A\rangle_{0}\right|^{2}+\left|\langle A\rangle_{1}\right|^{2}+\left|\langle A\rangle_{2}\right|^{2}+\left|\langle A\rangle_{3}\right|^{2}+\cdots \quad \geq 0$ ．
≥ 0 is a simplified pure mathematic assumption．－More generally about multi－vectors for physics later below．
${ }^{254}$ The direction of a plane object we define as $\boldsymbol{i}=\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1}$ from the two objects 1－vectors $\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}$ ．For describing the translation through space \mathfrak{G} outside the plane object we need a third 1－vector $\boldsymbol{\sigma}_{3} \perp\left(\boldsymbol{\sigma}_{2} \wedge \boldsymbol{\sigma}_{1}\right)$ to make an orthonormal basis $\left\{\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{\sigma}_{3}\right\}$ for the 1－vector combination $\mathbf{t}=t_{1} \boldsymbol{\sigma}_{1}+t_{2} \boldsymbol{\sigma}_{2}+t_{3} \boldsymbol{\sigma}_{3} \in\left(V_{3}, \mathbb{R}\right) \sim \mathbb{R}_{1,2,3}^{3}$ representing the translation． $\mathbf{t} \sharp\left(\boldsymbol{\sigma}_{2} \wedge \boldsymbol{\sigma}_{1}\right) \Leftrightarrow t_{3} \neq 0$ ．In plane $t_{3}=0$ ${ }^{255}$ In that plane we have $\langle A\rangle_{2} \sim(\mathbf{r} \wedge \mathbf{u}) \|\left(\boldsymbol{i}=\boldsymbol{\sigma}_{2} \wedge \boldsymbol{\sigma}_{1}\right)$ ，then we can express $\mathbf{u}=u_{1} \boldsymbol{\sigma}_{1}+u_{2} \boldsymbol{\sigma}_{2}$ and $\mathbf{r}=r_{1} \boldsymbol{\sigma}_{1}+r_{2} \boldsymbol{\sigma}_{2}$ as $\langle A\rangle_{1}$ ，choice $\boldsymbol{\sigma}_{1}=\mathbf{u}$ ． © Jens Erfurt Andresen，M．Sc．Physics，Denmark $\quad-192-\quad$ Research on the a priori of Physics－\quad December 2022

5．4．Transformation of Geometric 1－vectors in the Euclidean plane

5．4．1．Parallel Translation of a Vector

As we described earlier in $\S 4.4 .2 .13$ ，the points in space \mathfrak{G} are translations invariant We also decide as a priori that scalar magnitudes associated with the locus situs of geometric points is translations invariant． We have also found that 1 －vectors are translation invariant， since the parallel translation concept is based on the

substance of the 1 －vector concept．We refer to the previous Figure 4.6 （which is shown here）．
The same will inherently also apply to multi－vectors，as in their idea they are constructed from 1 －vectors of the Geometric Algebra of products and additions．The now well－known simple 2－multi－vector 1－rotor $\mathbf{v u}=\mathbf{u}_{2} \mathbf{u}_{1}=U_{\theta}:=e^{i \theta}$ from（5．83）is translation invariant．

5．42．Reflections

5．4．2．1．Reflection in a Geometric 1－vector

Given a 1 －vector \mathbf{u} in \mathfrak{G} space．We choose \mathbf{u} as norm $|\mathbf{u}|=1$ ．
We choose any other object 1 －vector \mathbf{x} in \mathfrak{G} space．
These two 1 －vector form a plane spanned by the bivector $\mathbf{u} \wedge \mathbf{x}$ This plane is the foundation object for Figure 5．41．
We make a normalized 1－vector direction $\hat{\mathrm{x}}=\mathrm{x} /|\mathrm{x}|$ for $\mathrm{x}=|\mathrm{x}| \hat{\mathrm{x}}$ ． For understanding，we have $\widehat{\mathbf{x}} \hat{\mathbf{x}}=\widehat{\mathbf{x}}^{2}=1$ and $\mathbf{x x}=\mathrm{x}^{2}=|\mathbf{x}||\mathbf{x}| \in \mathbb{R}_{+}$ The 2 －vector $\mathbf{u} \hat{\mathbf{x}}$ forms a rotor $U=\mathbf{u} \hat{\mathbf{x}}=\mathbf{u x} /|\mathbf{x}|$ in plane $\mathbf{u} \wedge \mathbf{x}$ ． The 1 －rotor was first defined in formulas（5．83）and（5．84）above
（5．168）$U_{\theta}=\mathbf{u}_{2} \mathbf{u}_{1}=e^{\boldsymbol{i} \theta}$ ，and $U_{\theta}^{\dagger}=\mathbf{u}_{1} \mathbf{u}_{2}=e^{-\boldsymbol{i} \theta}$ ，with $\Varangle\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\theta$ ． When the rotor U acts on \mathbf{x} ，we get $U \mathbf{x}=\mathbf{u} \widehat{\mathbf{x}} \mathbf{x}=\mathbf{u x x} /|\mathbf{x}|=|\mathbf{x}| \mathbf{u}$ ． We are searching the symmetrically reflected 1 －vector \mathbf{x}^{\prime} to \mathbf{x} around \mathbf{u} ，still in the $\mathbf{u} \wedge \mathbf{x}$ plane．

Figure 5．41 The plane $\mathbf{u} \wedge x$ Note the unit circle for the foundation plane idea

The reverse rotor $U^{\dagger}=\widehat{\mathbf{x}} \mathbf{u}$（5．84）acts on \mathbf{x}^{\prime} and must symmetrically give
（5．169）$\quad U^{\dagger} \mathbf{x}^{\prime}=\left|\mathbf{x}^{\prime}\right| \mathbf{u}:=|\mathbf{x}| \mathbf{u}=U \mathbf{x}, \quad$ as $\left|\mathbf{x}^{\prime}\right|:=|\mathbf{x}| \quad$（dimmed in the top middle of Figure 5．41）
Let U act on this 1－vector $U \mathbf{x}$ once again $U^{2} \mathbf{x}=U U \mathbf{x}=\frac{\mathbf{u x u x x}}{|\mathbf{x}||\mathbf{x}|}=\mathbf{u x u}=\frac{\mathbf{u x x x u}}{|\mathrm{x}||\mathbf{x}|}=U \mathbf{x} U^{\dagger}$
As a result，we have the rule of reflection of 1－vectors \mathbf{x} through（around）a given 1－vector \mathbf{u}
$\begin{array}{lll}(5.170) & \mathbf{x}=\mathbf{u x u}=U \mathbf{x} U, & \text { and reverse } \\ \text {（5．171）} & \mathbf{x}=\mathbf{u} \mathbf{x}^{\prime} \mathbf{u}=U^{\dagger} \mathbf{x}^{\prime} U, & \text { as shown in Figure 5．42．}\end{array}$
This is the fundamental formulation of reflection in \mathbf{u} inside this plane of Figure 5.41 and Figure 5．42．（around u） We can divide any 1 －vector into components along \mathbf{u} ，like
（5．172）$\quad \mathbf{x}_{\|}=(\mathbf{x} \cdot \mathbf{u}) \mathbf{u}$ ，and transverse $\mathbf{x}_{\perp}=(\mathbf{x} \wedge \mathbf{u}) \mathbf{u}$ ，as
（5．173）$\quad x=x_{\|}+x_{\perp} \Leftrightarrow x^{\prime}=u x u=x_{\|}-x_{\perp}, \quad$ showed in Figure 5.42

Figure 5．42 Reflection around a 1 －vector \mathbf{u} ． （through \mathbf{u} in the plane）． This is because we from（5．58）－（5．59）can write a 2－multivector a （5．174） $\mathbf{u x}=\mathbf{u} \cdot \mathbf{x}+\mathbf{u} \wedge \mathbf{x} \quad \Leftrightarrow \quad \mathbf{x u}=\mathbf{u} \cdot \mathbf{x}-\mathbf{u} \wedge \mathbf{x}=\mathbf{x} \cdot \mathbf{u}+\mathbf{x} \wedge \mathbf{u}$ and as we have

（5．175）

 $\mathbf{u} \cdot \mathbf{x}_{\perp}=\mathbf{x}_{\perp} \cdot \mathbf{u}=0$ ，and $\mathbf{u} \wedge \mathbf{x}_{\|}=\mathbf{x}_{\|} \wedge \mathbf{u}=0 ;$ and $\mathbf{u} \cdot \mathbf{x}_{\|}=\mathbf{x}_{\|} \cdot \mathbf{u}$ ，and $\mathbf{u} \wedge \mathbf{x}_{\perp}=-\mathbf{x}_{\perp} \wedge \mathbf{u}$ ， Hence （5．173）（5．176）$u x=u \cdot x_{\|}+u \wedge x_{\perp} \Leftrightarrow x u=u \cdot x_{\|}-u \wedge x_{\perp} \Leftrightarrow x^{\prime}=u x u=u u \cdot x_{\|}-u u \wedge x_{\perp}=x_{\|}-x_{\perp}$
（C）Jens Erfurt Andresen，M．Sc．NBI－UCPH，
For quotation reference use：ISBN－13：978－8797246931
For quotation reference use：ISBN－13：978－8797246931

